

Multi-Channel Sync Hipot Tester 19020/19020-4/19021/19022/19022-4 User's Manual

Multi-Channel Sync Hipot Tester 19020/19020-4/19021/19022/19022-4 User's Manual

Version 1.9 October 2014

Legal Notices

The information in this document is subject to change without notice.

Chroma ATE INC. makes no warranty of any kind with regard to this manual, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. Chroma ATE INC. shall not be held liable for errors contained herein or direct, indirect, special, incidental or consequential damages in connection with the furnishing, performance, or use of this material.

CHROMA ATE INC.

66 Hwaya 1st Rd., Kueishan Hwaya Technology Park, Taoyuan County 33383, Taiwan

Copyright Notices. Copyright 2008 Chroma ATE INC., all rights reserved. Reproduction, adaptation, or translation of this document without prior written permission is prohibited, except as allowed under the copyright laws.

Warranty

All of Chroma's instruments are warranted against defects in material and workmanship for a period of one year from date of shipment. Chroma agrees to repair or replace any assembly or component found to be defective, under normal use during this period. Chroma's obligation under this warranty is limited solely to repairing any such instrument, which in Chroma's sole opinion proves to be defective within the scope of the warranty when returned to the factory or to an authorized service center. Purchaser is responsible for the shipping and cost of the service item to Chroma factory or service center. Shipment should not be made without prior authorization by Chroma.

This warranty does not apply to any products repaired or altered by persons not authorized by Chroma, or not in accordance with instructions furnished by Chroma. If the instrument is defective as a result of misuse, improper repair, or abnormal conditions or operations, repairs will be billed at cost.

Chroma assumes no responsibility for its product being used in a hazardous or dangerous manner either alone or in conjunction with other equipment. High voltage used in some instruments may be dangerous if misused. Special disclaimers apply to these instruments. Chroma assumes no liability for secondary charges or consequential damages and in any event, Chroma's liability for breach of warranty under any contract or otherwise, shall not exceed the purchase price of the specific instrument shipped and against which a claim is made.

Any recommendations made by Chroma regarding the use of its products are based upon tests believed to be reliable; Chroma makes no warranty of the results to be obtained. This warranty is in lieu of all other warranties, expressed or implied, and no representative or person is authorized to represent or assume for Chroma any liability in connection with the sale of our products other than set forth herein.

CHROMA ATE INC.

66 Hwaya 1st Rd., Kueishan Hwaya Technology Park, Taoyuan County 33383, Taiwan Tel: 886-3-327-9999 Fax: 886-3-327-2886 e-mail: info@chromaate.com

http://www.chromaate.com

Material Contents Declaration

The recycling label shown on the product indicates the Hazardous Substances contained in the product as the table listed below.

<Table 1>

	Hazardous Substances						
Part Name	Lead	Mercury	Cadmium	Hexavalent Chromium	Polybrominated Biphenyls	Polybromodiphenyl Ethers	
	Pb	Hg	Cd	Cr ⁶⁺	PBB	PBDE	
PCBA	0	0	0	0	0	0	
CHASSIS	0	0	0	0	0	0	
ACCESSORY	0	0	0	0	0	0	
PACKAGE	0	0	0	0	0	0	

"O" indicates that the level of the specified chemical substance is less than the threshold level specified in the standards of SJ/T-11363-2006 and EU 2005/618/EC.

" \times " indicates that the level of the specified chemical substance exceeds the threshold level specified in the standards of SJ/T-11363-2006 and EU 2005/618/EC.

Disposal

Do not dispose of electrical appliances as unsorted municipal waste, use separate collection facilities. Contact your local government for information regarding the collection systems available. If electrical appliances are disposed of in landfills or dumps, hazardous substances can leak into the groundwater and get into the food chain, damaging your health and well-being. When replacing old appliances with new one, the retailer is legally obligated to take back your old appliances for disposal at least for free of charge.

<Table 2>

	Hazardous Substances						
Part Name	Lead	Mercury	Cadmium	Hexavalent Chromium	Polybrominated Biphenyls	Polybromodiphenyl Ethers	
	Pb	Hg	Cd	Cr ⁶⁺	PBB	PBDE	
PCBA	×	0	0	0	0	0	
CHASSIS	×	0	0	0	0	0	
ACCESSORY	×	0	0	0	0	0	
PACKAGE	0	0	0	0	0	0	

"O" indicates that the level of the specified chemical substance is less than the threshold level specified in the standards of SJ/T-11363-2006 and EU 2005/618/EC.

" \times " indicates that the level of the specified chemical substance exceeds the threshold level specified in the standards of SJ/T-11363-2006 and EU 2005/618/EC.

- 1. Chroma is not fully transitioned to lead-free solder assembly at this moment; however, most of the components used are RoHS compliant.
- 2. The environment-friendly usage period of the product is assumed under the operating environment specified in each product's specification.

Disposal

Do not dispose of electrical appliances as unsorted municipal waste, use separate collection facilities. Contact your local government for information regarding the collection systems available. If electrical appliances are disposed of in landfills or dumps, hazardous substances can leak into the groundwater and get into the food chain, damaging your health and well-being. When replacing old appliances with new one, the retailer is legally obligated to take back your old appliances for disposal at least for free of charge.

	www.chromaate.com	oma
CE		
	Declaration of Conformity	
For the following equip	ment :	
Multi-Channel Hipo		
(Product Name/ Trade N		
19020, 19021, 1902	2, 19020-4, 19022-4	
(Model Designation)		
CHROMA ATE INC.		
(Manufacturer Name)		
	shan Hwaya Technology Park, Taoyuan County 33383, Taiwan	
(Manufacturer Address)		
Is herewith confirmed	o comply with the requirements set out in the Council Directive	on the
Approximation of the L	aws of the Member States relating to Electromagnetic Compatib	oility
(2004/108/EC) and Lo	v Voltage Directive (2006/95/EC). For the evaluation regarding t	the
Directives, the following	g standards were applied :	
EN 61326-1:2006		
EN 55011:1998/A1	1999/A2:2002 Class A, EN 61000-3-2:2006,	
EN61000-3-3:1995	A1:2001/A2:2005, IEC 61000-4-2:1995/A1:1998/A2:2000,	
IEC 61000-4-3:200	2, IEC 61000-4-4:2004, IEC 61000-4-5:1995/A1:2000,	
IEC 61000-4-6:200	3, IEC 61000-4-8:1993/A1:2000, IEC 61000-4-11:2004	
EN 61010-1:2010 and	EN 61010-2-030:2010	
• •	manufacturer or authorized representative established within the	e EUT is
responsible for this de	laration :	
CHROMA ATE INC.		
(Company Name)	shan Hwaya Technology Park, Taoyuan County 33383, Taiwan	
(Company Address)	nian rwaya lecinology raik, laoyuan county 33363, laiwan	
Person responsible for	this declaration:	
Mr. Benjamin Huang		
(Name, Surname) T&M BU Vice Preside	nt	
(Position/Title)	£, \$	
Taiwan	2012.11.26 Ben/amin Hu	and
(Place)	(Date) (Legal Signature)	7

Unpacking for Check & Inspection

Before shipment, this instrument was inspected and found to be free of mechanical and electrical defects. As soon as the instrument is unpacked, inspect for any damage that may have occurred in transit. Save all packing materials in case the instrument has to be returned. If damage is found, please file claim with carrier immediately. Do not return the instrument to Chroma without prior approval.

Standard Package

Item Name	Qty	Description
US Power Cord	1	USA standard 180 degree straight head power cord with the length 1.8 meter, 15A
15A Fuse	2	15A SLOW
CANBUS Cable		PHONE CABLE 6P6C to connect multiple devices, length 1 meter
D-SUB Cable		D-SUB-25P-MALE*2 to connection multiple devices, length 1 meter
High Voltage Cable	Note 2	Single head high voltage terminal + 20kV high voltage cable, length 3.1 meters
RTN/LOW Cable	Note 2	Single head BNC(MALE)+RG-174, length 3 meters
Quick Start Guide	2	One English version and one Traditional Chinese version.
User's Manual CD	1	CD for user's manuals in English and Traditional Chinese

1. 2. When additional item is required, just inform Chroma the item name. Note

The cable quantity is varied with the output channel configured, for

instance, the cable quantity for 10CH model is 10 sets and for 4CH mode is 4 sets.

Hazard Operation Methods

1. Do not touch the testing area when this Hipot Tester is outputting voltage or you may get electric shock and it may cause death.

Be sure to obey the following:

- The earth wire must be connected exactly and use a standard power cord. •
- Do not touch the output terminal.
- Do not touch the test wire that connected to the terminal in test. •
- Do not touch any unit under test.
- Do not touch any component that connected to output terminal for charge. •
- Do not touch the test unit right after the test is ended or when the output is just turned off.
- 2. The electric shock incident may occur when:
 - The earth terminal of Hipot Tester is not connected properly.
 - The insulating gloves are not in use during test.
 - Users touch the test unit right after the test is done. •

CAUTION Please see Chapter 3 Precaution before Use in this manual for detail descriptions of usage notices and operation hazards.

Do not tie up the high voltage cable with RS232, Handler and GPIB control cables or other low voltage side wires. If so, it could cause the product or PC to be down or damaged.

Storage, Freight, Maintenance & Cleaning

Storage

When not in use, please pack the device properly and store in a suitable environment.

Freight

Please pack the device carefully before moving it. If any of the original packing material is missing, please use suitable alternative material and mark it "fragile" and "keep away from water" to avoid damaging to the product.

This product is a piece of precision test equipment, so please do not drop or hit it.

Maintenance

In case of any malfunction or abnormality, please refer to the manual, or contact our local distributor for prompt service. Do not touch any parts inside the instrument to avoid any danger to yourself or damage to the product.

Regular check and calibration is required to ensure the device meets the product specification. The suggested calibration period every 12 months.

Cleaning

Remove all connected wires and cables on the instrument before cleaning. Use a brush to clean the dust on it. For internal cleaning, use a low-pressure air gun to vacuum the dust inside or send it back to the distributors or agents of Chroma for cleaning.

Revision History

The following lists the additions, deletions and modifications in this manual at each revision.

Date	Version	Revised Sections
Nov. 2008	1.0	Complete this manual.
June 2009	1.1	Add "ACA MEAS." in the section of "Setting SYSTEM CONFIG" under the chapter of "Operation."
		Update the commands in the chapter of " <i>GPIB/RS232 Interface</i> (<i>IEEE-488.2</i>)."
Nov. 2009	1.2	Update the values in "Specification" chapter and the figures of "Example of Using Internal Power Supply" as well as of "Example of Using External Power Supply" in "Example of External Control Circuit" section.
June 2010	1.3	Add two new items in the chapter of "Precaution before Use".
Dec. 2010	1.4	Update "Material Contents Declaration."
May 2011	1.5	Add descriptions of 19020-4 & 19022-4 two new models.
Sep. 2011	1.6	Update "Standard Package" and its Note in "Unpacking for Check & Inspection".
Dec. 2012	1.7	Add "CE Declaration of Comformity".
		Update "Pin Assignment" in the chapter of "HANDLER Interface".
Aug. 2013	1.8	 Update the following: "Setting TEST CONTROL", "Setting SYSTEM CONFIG" and "Selecting Test Mode" sections in the chapter of "Operation" "Commands Summary" and "Command Description" in the chapter of "GPIB/RS232 Interface"
Oct. 2014	1.9	Add PSC Mode to DC, IR and OSC tests procedures and commands.

Table of Contents

1.	1.1 1.2	Pro	Preface 1-1 Product Overview 1-1 Features 1-1					
2.		Specifi	ication (18°C ~ 28°C RH ≤ 70%)	2-1				
3.		Precaution before Use3-1						
4.		Operat	ion	4-1				
	4.1	-	nt Panel					
	4.2		ar Panel					
	4.3		ices before Using & Procedure					
	4.4		ting SYSTEM Parameters					
		4.4.1 4.4.2	Entering SYSTEM Setting Screen					
		4.4.2 4.4.3	Setting TEST CONTROL Setting SYSTEM CONFIG					
		4.4.3 4.4.4	Setting KEY LOCK					
		4.4.5	Setting FAIL LOCK					
		4.4.6	Changing PASSWORD					
		4.4.7	Setting CALIBRATION					
		4.4.8	Setting ERROR LOG					
	4.5	Set	ting PROGRAM					
		4.5.1	How to Get in PROGRAM Setting Screen					
	4	4.5.2	Setting Program Procedure	4-15				
		4.5.3	Selecting Test Mode					
	4	4.5.4	Description of Parameters					
	4.6		naging Memory for Programs					
		4.6.1	Entering Memory Screen					
		4.6.2	Saving Memory					
		4.6.3	Deleting Memory					
		4.6.4	Recalling Memory					
	4.7		ng OFFSET or GET Cs					
		4.7.1 4.7.2	How to Get in OFFSET or GET Cs Screen Using GET OFFSET					
		4.7.2 4.7.3	Using GET CS					
	4.8	-	nducting the Test					
	-		Connecting the UUT					
		4.8.2	Procedure for AC/DC Test	-				
		4.8.3	Procedure for IR Test					
		4.8.4	Procedure for OSC Test					
		4.8.5	Test Procedure for PA Test					
		4.8.6	Auto Range	4-29				
	4	4.8.7	Hardware/Software AGC	4-29				
5.		HANDI	ER Interface	5-1				
•	5.1		oduction	-				
	5.2		ecification					
	-	5.2.1	Driving Capability					
	4	5.2.2	Pin Assignment					
	5.3		ample of External Control Circuit	5-3				
			Example of Using Internal Power Supply					
		5.3.2	Example of Using External Power Supply					
	5.4	Tim	ning Diagram	5-5				

6.	GPIB/F	RS232 Interface (IEEE-488.2)	6-1
	6.1 Intr	oduction	6-1
	6.2 GP	'IB Interface (Option)	6-1
	6.2.1	Applied Standard	
	6.2.2	Interface Capability	6-1
	6.2.3	Interface Message	
	6.2.4	Command Format	
	6.2.5	Panel Description	
		232 Specification	
	6.3.1	Data Format	
	6.3.2	Command Format	
	6.3.3	Connector	
	6.3.4	Connection	
		ucture of Remote Interface	
		mmands for Remote Interface	
	6.5.1	Commands Summary	
	6.5.2	Command Description	
	6.6 Err	or Messages	6-36
7.		ation Procedure	
		tering Calibration Screen	
		lecting the Channel for Calibration	
		OREFERENCE Calibration	
		tage Calibration	
		ACV Calibration	
	7.4.2	DCV Calibration	
	7.4.3	OSCV Calibration	
	7.5 Cu	rrent Calibration	
	7.5.1	ACA Current Calibration	
	7.5.2	DCA Current Calibration	
		ulation Resistance (IR) Calibration	
		C Calibration	
	7.7.1	AC ARC Calibration	
	7.7.2	DC ARC Calibration	
	7.8 Wh	en Calibration is Done	7-21

1. Preface

1.1 Product Overview

The 19020/19021/19022 Multi-Channel Sync Hipot Testers are high quality devices specially designed to test the hipot leakage current and insulation resistance automatically for electrical and electronic equipment.

For withstand voltage test, the output power of each channel for 19020/19020-4 is AC: 50VA(5kV, 10mA) /DC: 30VA(6kV, 5mA), for 19021 is AC: 48VA(6kV, 8mA) and for 19022/19022-4 is DC: 28VA(8kV, 3.5mA). Thus they can be used to perform withstand voltage tests on electronic, electrical equipment as well as on components.

For insulation resistance test, the range it can show is $0.1M\Omega \sim 50G\Omega$ and the test voltage is 50V~1000V that can be set as desired. (Note: Only 19021 can conduct AC withstand voltage test.)

The Hipot Tester uses a clear display to show all settings, time, current, voltage, resistance and memory channel no., etc without the need to memorize the parameters set previously.

The Hipot Tester has equipped the device to identify pass or fail products as well as to output signals of test result and to remote control other devices. It has GPIB, HANDLER and RS232 interfaces that are of advantage to automatic test system. This Tester equipped with assorted devices mentioned above is capable of performing highly efficient and accurate tests for electrical, electronics equipment and components.

1.2 Features

Sync Withstand Voltage Test

The testers have the world's first sync withstand voltage test function that a single device can have 10 channels to output and test simultaneously and maximum 10 devices can be controlled (master & slave) for 100 channels. They can be grouped for output to avoid voltage difference from generation due to adjacent test and furthermore to improve the production efficiency.

Multiple Tests

The testers are able to select single test function such as AC withstand voltage test, DC withstand voltage test, Insulation Resistance (IR) test and Open/Short Check (OSC) test

OSC (Open/Short Check)

The testers have built-in OSC function to check if there is any Open (bad connection) or Short (UUT shorted) occurred during test. It may cause the Fail product to be identified as Pass if Open occurs. If Short is detected and resolved early when occurred, it can reduce the damage to fixture and save the test cost.

Clear Display

The testers have a clearest design for display. All programs for settings such as test voltage, current state, test readings, test steps and test states are able to be viewed from the LED display directly.

High/Low Limit Comparison for Pass/Fail Products

The testers have been designed to do High/Low Limit comparison for the Unit Under Test (UUT.) This function is available in Withstand Voltage test or Insulation Resistance test. The low limit comparison for hipot and high limit comparison for insulation are used to test if there's any bad connection or loose test wire that causes misjudgment.

Remote Control

The HANDLER of the testers is able to extend the control signals for controlling externally. It usually connects to the control box of automated devices.

Change Voltage Ramp Time

These testers have a [RAMP] function that can set the time required for voltage rises from zero to set value.

Change Voltage Fall Time

These testers have a [FALL] function that can set the time required for voltage falls from set value to low when the test time ends.

Auto Switch Low Current Range

The current meter ranges for withstand voltage test in the testers have two ranges, one is low AC range 0~2.999mA and the other is $3.00 \text{ mA} \sim \text{maximum AC}$. There are three ranges for DC: 0~299.9uA low current range, $0.300\text{mA} \sim 2.999\text{mA}$ current range and $3.00 \sim \text{maximum AC}$. If the tested current is low, software can be used to switch the current range to low range automatically for resolution improvement before the test ends as need.

2. Specification ($18^{\circ}C \sim 28^{\circ}C RH \leq 70\%$)

Maximum/Model	19020	19020-4	19021	19022	19022-4
Output Channels	10CH	4CH	10CH	10CH	4CH
AC	5kV,10mA		6kV,8mA		
DC	6kV,5mA			8kV,3	.5mA
IR	1kV			11	۲V

□ Frame Number Master fixed the frame number on 0 Slave need to select frame number (1~9) □ Withstanding Voltage Test Output Voltage: AC: 0.05-Maximum, steps 0.001kV, 50Hz/60Hz ± 0.1%, sine wave. Output Voltage: DC: 0.05-Maximum, steps 0.001kV. Load Regulation: ≤ (1% of setting + 0.1% of full scale), Rated load, AGC ON Output Voltage Monitor V-monitor: ± (1% of setting + 0.1% of full scale) <note1> Output Voltage Monitor V-monitor: ± (1% of reading + 0.1% of full scale), 2V resolution Cutoff Current AC:0.01mA~10mA, 0.001mAdc resolution DC:0.001mA~5mA, 0.1uAdc resolution DC:0.001mA~5mA, 0.1uAdc resolution Leakage Current Meter 3mA range: 0.01mA - 2.999mA 10mA range: 0.01mA - 2.999mA 3mA range: 0.01mA - 2.999mA 3mA range: 0.01mA - Maximum Measurement Accuracy: ± (1% of setting +0.5% of full scale) DC current: 300uA: 0.1uA- 299.9uA 3mA range: 0.01mA - 10mA, step 0.1mA □ Flashover (ARC) Detection <note2> AC: 1mA -20mA, DC: 1mA -10mA, step 0.1mA □ Insulation Resistance Measurement Measurement Accuracy: ± (2% of setting + 0.5% of full scale) Output Voltage V-monitor: ± (1% of reading + 0.5% of full scale) Output Voltage V-monitor: ± (1% of reading + 0.5% of full scale) Output Voltage V-monitor: ± (1% of reading + 0.5% of full scale) IGΩ-10GΩ: ± (3% of reading + 0.5%</note2></note1>	Multi-Hipot Unit	Output channels are defined by model, independent output		
Slave need to Select frame number (1~9)□Withstanding VoltageOutput Voltage:AC: 0.05-Maximum, steps 0.001kV, 50Hz/60Hz ± 0.1%, sine wave. DC: 0.05-Maximum, steps 0.001kV. Load Regulation: ≤ (1% of setting + 0.1% of full scale), Rated load, AGC ON Voltage Accuracy: ± (1% of setting + 0.1% of full scale) <note1>Output Voltage MonitorV-monitor: ± (1% of reading + 0.1% of full scale), 2V resolution DC: 0.001mA~fomA, 0.001mAdc resolution DC: 0.001mA~fomA, 0.1uAdc resolution DC: 0.001mA~fomA, 0.1uAdc resolution DC: 0.01mA - fomA range: 0.01mA – Maximum; Measurement Accuracy: ± (1% of setting +0.5% of full scale) DC current: 300uA: 0.1uA-299.9uA 3mA range: 0.01mA – 2.999mA 10mA range: 0.01mA – 2.999mA 5mA range: 0.01mA – Maximum; Measurement Accuracy: ± (1% of setting +0.5% of full scale) DC current: 300uA: 0.1uA-299.9uA 3mA range: 0.01mA – 2.999mA 5mA range: 0.01mA – 2.999mA 5mA range: 0.01mA – 2.999mA 5mA range: 0.01mA – 10mA, step 0.1mA□Flashover (ARC) Detection <note2>□AC: 1mA –20mA, DC: 1mA –10mA, step 0.1mA Voltage□DC: 0.05-1.0 kV, steps 0.001kV Voltage Accuracy: ± (2% of setting + 0.5% of full scale)0Utput Voltage V-monitor: ± (1% of reading + 0.5% of full scale)0Measurement MOC: 10.02: ± (3% of reading + 0.5% of full scale)0Maximum Monitor1Starting + 1.0% of full scale)1GΩ - 10GΩ: ± (3% of reading + 0.1% of full scale)1MΩ-1GΩ: ± (3% of reading + 1% of full scale)1GΩ - 10GΩ: ± (3% of reading + 1% of full scale)1GΩ - 10GΩ: ± (3% of reading + 1% of full scale)1GΩ - 10GΩ: ± (3% of readi</note2></note1>				
AC: 0.05-Maximum, steps 0.001kV, 50H2/60Hz \pm 0.1%, sine wave.Output Voltage:DC: 0.05-Maximum, steps 0.001kV. Load Regulation: \leq (1% of setting \pm 0.1% of full scale), Rated load, AGC ON Voltage Accuracy: \pm (1% of setting \pm 0.1% of full scale) <note1>Output Voltage MonitorV-monitor: \pm (1% of reading \pm 0.1% of full scale), 2V resolutionCutoff CurrentAC:0.01mA~10mA, 0.001mAdc resolution DC:0.001mA~5mA, 0.1uAdc resolution DC:0.001mA~5mA, 0.1uAdc resolutionLeakage Current MeterAC current: 3mA range: 0.01mA - Maximum; Measurement Accuracy: \pm (1% of setting \pm0.5% of full scale) DC current: 300uA: 0.1uA-299.9uA 3mA range: 0.01mA - 2.999mA 10mA range: 0.01mA - Maximum Measurement Accuracy: \pm (1% of setting \pm0.5% of full scale) DC current: 300uA: 0.1uA-299.9uA 3mA range: 0.01mA - 10mA, step 0.1mA□Flashover (ARC) Detection <note2>AC: 1mA -20mA, DC: 1mA -10mA, step 0.1mA□Insulation Resistarce Voltage Accuracy: \pm (2% of setting \pm0.5% of full scale)Output Voltage MonitorDC: 0.05-1.0 kV, steps 0.001kV Voltage Accuracy: \pm (2% of setting \pm0.5% of full scale)Measurement Accuracy (RH \leq 60%)10GΩ~50GΩ: \pm (1% of reading \pm 0.5% of full scale) 10GΩ~50GΩ: \pm (1% of reading \pm 1% of full scale)Measurement Accuracy (RH \leq 60%)0.1-999.9 sec., and OFF Fall TimeImage Time Burger0.1-999.9 sec., and OFFFall Time Current Current0.1-999.9 sec., and OFFFall Time Current0.1-999.9 sec., and OFFFall Time Current0.1-999.9 sec., and OFFFall Time Current0.1-999.9 sec., and OFF<td></td><td colspan="3"></td></note2></note1>				
Output Voltage:wave. DC: 0.05-Maximum, steps 0.001kV. Load Regulation: $\leq (1\% \text{ of setting } + 0.1\% \text{ of full scale}), Ratedload, AGC ONVoltage Accuracy: \pm (1\% \text{ of setting } + 0.1\% \text{ of full scale}) < Note1>Output VoltageMonitorV-monitor: \pm (1\% \text{ of reading } + 0.1\% \text{ of full scale}), 2V resolutionDC: 0.01mA~10mA, 0.001mAdc resolutionDC: 0.001mA~5mA, 0.1uAdc resolutionDC: 0.001mA~5mA, 0.1uAdc resolutionAC current:3mA range: 0.001mA - 2.999mA10mA range: 0.01mA - Maximum;Measurement Accuracy: \pm (1\% \text{ of setting } + 0.5\% \text{ of full scale})DC current:300uA: 0.1uA- 299.9uA3mA range: 0.01mA - MaximumMeasurement Accuracy: \pm (1\% \text{ of setting } + 0.5\% \text{ of full scale})DC current:300uA: 0.1uA- 299.9uA3mA range: 0.01mA - MaximumMeasurement Accuracy: \pm (1\% \text{ of setting } + 0.5\% \text{ of full scale})□Flashover (ARC)Detection AC: 1mA -20mA, DC: 1mA -10mA, step 0.1mA□Insulation Resistance Measurement0DC: 0.05-1.0 kV, steps 0.001kVVoltageMonitor0Uput VoltageMonitor0V-monitor: \pm (1\% \text{ of reading } + 0.5\% \text{ of full scale})0DC: 0.05-1.0 kV, steps 0.001kVVoltage Accuracy: \pm (2\% \text{ of setting } + 0.5\% \text{ of full scale})0DC: 0.05-1.0 kV, steps 0.001kVVoltageMonitor0DC: 0.05-1.0 kV, steps 0.001kVVoltage Accuracy: \pm (2\% \text{ of setting } + 0.5\% \text{ of full scale})0DC: 0.05-1.0 kV, steps 0.001kVVoltageMonitor: \pm (1\% \text{ of reading } + 0.5\% \text{ of full scale})1DC: 0.05-1.0 kV, steps 0.001kVVoltageMonitor: \pm (1\% \text{ of reading } + 0.5\% \text{ of full scale})1DC: 0.05-1.0 kV, steps 0.001kVVoltage<$				
Output Voltage:DC: 0.05-Maximum, steps 0.001kV. Load Regulation: \leq (1% of setting + 0.1% of full scale), Rated load, AGC ON Voltage Accuracy: \pm (1% of setting + 0.1% of full scale) <note1>Output Voltage MonitorV-monitor: \pm (1% of reading + 0.1% of full scale), 2V resolution DC: 0.001mA~10mA, 0.001mAdc resolution DC: 0.001mA~5mA, 0.1uAdc resolution DC: 0.001mA~5mA, 0.1uAdc resolution DC: 0.001mA~5mA, 0.1uAdc resolution DC: 0.001mA~5mA, 0.1uAdc resolution DC: 0.001mA~2.999mA 10mA range: 0.01mA - Maximum; Measurement Accuracy: \pm (1% of setting +0.5% of full scale) DC current: 300uA: 0.1uA-299.9uA 3mA range: 0.01mA - Asimum Measurement Accuracy: \pm (1% of setting +0.5% of full scale) DC current: 300uA: 0.1uA-299.9uA 3mA range: 0.01mA - Maximum Measurement Accuracy: \pm (1% of setting +0.5% of full scale)uFlashover (ARC) Detection <note2>uRC: 1mA -20mA, DC: 1mA -10mA, step 0.1mAuDC: 0.05-1.0 kV, steps 0.001kV Voltage Accuracy: \pm (2% of setting + 0.5% of full scale)Output Voltage MonitorDC: 0.05-1.0 kV, steps 0.001kV Voltage Accuracy: \pm (1% of reading + 0.5% of full scale)Output Voltage MonitorDC: 0.05-1.0 kV, steps 0.001kV Voltage Accuracy: \pm (2% of setting + 0.5% of full scale)Output Voltage MonitorV-monitor: \pm (1% of reading + 0.1% of full scale)Measurement 1GQ~1GQ: \pm (3% of reading + 0.1% of full scale)Accuracy (RH \leq 60%)1MQ~1GQ: \pm (3% of reading + 0.1% of full scale)Accuracy (RH \leq 60%)0.03 – 999.9 sec., and OFFTest Time0.03 – 999.9 sec., and OFFFall Time 00.1-999.9 sec., and OFFImp0.1-999.9 sec., and OFF<td></td><td></td></note2></note1>				
Output Voltage.Load Regulation: $\leq (1\% \text{ of setting } + 0.1\% \text{ of full scale}), Ratedload, AGC ONVoltage Accuracy: \pm (1\% \text{ of setting } + 0.1\% \text{ of full scale}) Output VoltageMonitorV-monitor: \pm (1\% \text{ of reading } + 0.1\% \text{ of full scale}), 2V resolutionDC:0.01mA~10mA, 0.001mAc resolutionDC:0.001mA~5mA, 0.1uAdc resolutionDC:0.001mA~5mA, 0.1uAdc resolutionAC current:3mA range: 0.001mA - 2.999mA10mA range: 0.01mA - Maximum;Measurement Accuracy: \pm (1\% \text{ of setting } + 0.5\% \text{ of full scale})DC current:300uA: 0.1uA- 299.9uA3mA range: 0.001mA - 2.999mA5mA range: 0.01mA - MaximumMeasurement Accuracy: \pm (1\% \text{ of setting } + 0.5\% \text{ of full scale})□Flashover (ARC)Detection AC: 1mA -20mA, DC: 1mA -10mA, step 0.1mA□Insulation ResistanceMeasurementMeasurementOutput VoltageMonitorDC: 0.05-1.0 kV, steps 0.001kVVoltage Accuracy: \pm (2\% \text{ of setting } + 0.5\% \text{ of full scale})0Uptur VoltageMonitorV-monitor: \pm (1\% \text{ of reading } + 0.5\% \text{ of full scale})0MeasurementAccuracy: \pm (2\% \text{ of setting } + 0.5\% \text{ of full scale})0V-monitor: \pm (1\% \text{ of reading } + 0.5\% \text{ of full scale})0Vitage Accuracy: \pm (2\% \text{ of setting } + 0.5\% \text{ of full scale})0Nonitor2500V:1MQ~1GQ: \pm (3\% \text{ of reading } + 1\% \text{ of full scale})10GQ~10GQ: \pm (10\% \text{ of reading } + 1\% \text{ of full scale})10GQ~10GQ: \pm (10\% \text{ of reading } + 1\% \text{ of full scale})10GQ~10GQ: \pm (1\% \text{ of reading } + 1\% \text{ of full scale})10GQ~50GQ: \pm (10\% \text{ of reading } + 1\% \text{ of full scale})10GQ~10GQ: \pm (1\% \text{ of reading } + 1\% of full $				
$\begin{tabular}{ c c c c c c c } \label{eq:constraint} \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Output Voltage:			
Voltage Accuracy: \pm (1% of setting + 0.1% of full scale) <note1>Output Voltage MonitorV-monitor: \pm (1% of reading + 0.1% of full scale), 2V resolutionCutoff CurrentAC:0.01mA~10mA, 0.001mAdc resolution DC:0.001mA~5mA, 0.1uAdc resolutionLeakage Current MeterAC current: 3mA range: 0.001mA - 2.999mA 10mA range: 0.01mA - Maximum; Measurement Accuracy: \pm (1% of setting +0.5% of full scale) DC current: 300uA: 0.1uA-299.9uA 3mA range: 0.01mA - Maximum Measurement Accuracy: \pm (1% of setting +0.5% of full scale) DC current: 300uA: 0.1uA-299.9uA 3mA range: 0.01mA - Maximum Measurement Accuracy: \pm (1% of setting +0.5% of full scale)□Flashover (ARC) Detection <note2>AC: 1mA -20mA, DC: 1mA -10mA, step 0.1mA0Uput VoltageDC: 0.05-1.0 kV, steps 0.001kV Voltage Accuracy: \pm (2% of setting + 0.5% of full scale)Output VoltageV-monitor: \pm (1% of reading + 0.5% of full scale)Measurement Accuracy (RH \leq 60%)IGQ~10GQ: \pm (3% of reading + 0.1% of full scale)Measurement Accuracy (RH \leq 60%)IGQ~10GQ: \pm (10% of reading + 1% of full scale)Test Time0.03 - 999.9 sec., and OFF Fall Time00.1 - 999.9 sec., and OFFFall Time0.1- 999.9 sec., and OFFImage Fall Time0.1- 999.9 sec., and OFFImage Fall Time0.1- 999.9 sec., and OFFTest Voltage LevelLess than ac 100V</note2></note1>				
MonitorV-monitor: \pm (1% of reading + 0.1% of rull scale), 2V resolutionCutoff CurrentAC:0.01mA~10mA, 0.001mAdc resolution DC:0.001mA~5mA, 0.1uAdc resolution AC current: 3mA range: 0.001mA - 2.999mA 10mA range: 0.01mA - Maximum; Measurement Accuracy: \pm (1% of setting +0.5% of full scale) DC current: 300uA: 0.1uA- 299.9uA 3mA range: 0.01mA - A2.999mA 5mA range: 0.01mA - 2.999mA 5mA range: 0.05-1.0 kV, steps 0.001kV Voltage Voltage Accuracy: \pm (1% of reading + 0.5% of full scale) 1GQ~1GQ: \pm (3% of reading + 0.1% of full scale) 1GQ~1GQ: \pm (1% of reading + 1% of full scale) 1GQ~1GQ: \pm (1% of reading + 1% of full scale) 1GQ~1GQ: \pm (1% of reading + (0.2 x 500V /Vs)% of full scale] 1GQ - 1GQ: \pm [3% of reading + (0.2 x 500V /Vs)% of full scale] 1MQ~1GQ: \pm [3% of reading + (0.2 x 500V /Vs)% of full scale] 1MQ~1GQ: \pm [3% of reading + (0.2 x		,		
Cutor currentDC:0.001mA~5mA, 0.1uAdc resolutionAC current: 3mA range: 0.001mA - 2.999mA 10mA range: 0.01mA Maximum; Measurement Accuracy: \pm (1% of setting +0.5% of full scale) DC current: 300uA: 0.1uA- 299.9uA 3mA range: 0.001mA - 2.999mA 5mA range: 0.01mA - Maximum Measurement Accuracy: \pm (1% of setting +0.5% of full scale)D: Flashover (ARC) Detection <note2>AC: 1mA -20mA, DC: 1mA -10mA, step 0.1mAa Insulation Resistance MonitorMeasurement DC: 0.05-1.0 kV, steps 0.001kV Voltage Accuracy: \pm (2% of setting + 0.5% of full scale)Output Voltage MonitorDC: 0.05-1.0 kV, steps 0.001kV Voltage Accuracy: \pm (2% of setting + 0.5% of full scale)Measurement Accuracy (RH \leq 60%)$IG\Omega \sim 10G\Omega: \pm$ (3% of reading + 0.1% of full scale) 10G$\Omega \sim 50G\Omega: \pm$ (10% of reading + 1% of full scale) </note2>		V-monitor: ± (1% of reading + 0.1% of full scale), 2V resolution		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Cutoff Current	AC:0.01mA~10mA, 0.001mAdc resolution		
$\begin{array}{llllllllllllllllllllllllllllllllllll$				
$\begin{array}{llllllllllllllllllllllllllllllllllll$				
$\begin{array}{llllllllllllllllllllllllllllllllllll$				
Leakage Current: MeterDC current: 300uA: $0.1uA-299.9uA$ 3mA range: $0.001mA - 2.999mA$ 5mA range: $0.01mA - Maximum$ Measurement Accuracy: $\pm (1\% \text{ of setting } +0.5\% \text{ of full scale})$ □Flashover (ARC) Detection <note2>AC: $1mA - 20mA$, DC: $1mA - 10mA$, step $0.1mA$□Insulation Resistance MeasurementOutput VoltageDC: $0.05 \cdot 1.0 \text{ kV}$, steps 0.001 kV Voltage Accuracy: $\pm (2\% \text{ of setting } + 0.5\% \text{ of full scale})$Output VoltageV-monitor: $\pm (1\% \text{ of reading } + 0.5\% \text{ of full scale})$Nonitor$\geq 500V$: $1M\Omega \sim 1G\Omega$: $\pm (3\% \text{ of reading } + 0.1\% \text{ of full scale})$Measurement Accuracy (RH $\leq 60\%$)$10G\Omega \sim 50G\Omega$: $\pm (10\% \text{ of reading } + 1\% \text{ of full scale})$1<math>0.03 - 999.9 \text{ sec., and Continuous (IR: $0.3 - 999.9 \text{ sec.})$Ramp Time$0.1- 999.9 sec., and OFF$□OSC - Contact CheckTest Voltage LevelLess than ac 100V</math></note2>				
Meter $300uA: 0.1uA- 299.9uA$ $3mA range: 0.001mA - 2.999mA$ $5mA range: 0.01mA - Maximum$ Measurement Accuracy: $\pm (1\% \text{ of setting } +0.5\% \text{ of full scale})$ □Flashover (ARC) Detection < Note2> AC: 1mA -20mA, DC: 1mA -10mA, step 0.1mA□Insulation ResistanceMeasurementOutput VoltageDC: 0.05-1.0 kV, steps 0.001kV Voltage Accuracy: $\pm (2\% \text{ of setting } + 0.5\% \text{ of full scale})$ Output Voltage MonitorV-monitor: $\pm (1\% \text{ of reading } + 0.5\% \text{ of full scale}), 2V resolutionMeasurementAccuracy (RH \leq 60\%)1M\Omega \sim 1G\Omega: \pm (3\% \text{ of reading } + 0.1\% \text{ of full scale})10G\Omega \sim 50G\Omega: \pm (10\% \text{ of reading } + 1\% \text{ of full scale})Test Time0.03 - 999.9 sec., and Continuous (IR: 0.3 - 999.9 sec.)Ramp Time0.1- 999.9 sec., and OFFFall Time0.1- 999.9 sec., and OFF\Box OSC - Contact CheckLess than ac 100V$	Leakage Current			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Meter			
5mA range: $0.01mA$ -Maximum Measurement Accuracy: $\pm (1\% \text{ of setting } +0.5\% \text{ of full scale})$ Image: Flashover (ARC) Detection <note2>AC: $1mA - 20mA$, DC: $1mA - 10mA$, step $0.1mA$Image: Insulation ResistanceMeasurementOutput VoltageDC: $0.05 - 1.0 \text{ kV}$, steps 0.001 kV Voltage Accuracy: $\pm (2\% \text{ of setting } + 0.5\% \text{ of full scale})$Output VoltageV-monitor: $\pm (1\% \text{ of reading } + 0.5\% \text{ of full scale})$Output Voltage MonitorV-monitor: $\pm (1\% \text{ of reading } + 0.5\% \text{ of full scale})$Accuracy (RH $\leq 60\%$)$1G\Omega \sim 10G\Omega$: $\pm (3\% \text{ of reading } + 0.1\% \text{ of full scale})$Accuracy (RH $\leq 60\%$)$10G\Omega \sim 50G\Omega$: $\pm (10\% \text{ of reading } + 1\% \text{ of full scale})$Test Time$0.03 - 999.9 \text{ sec.}$, and Continuous (IR: $0.3 - 999.9 \text{ sec.}$)Ramp Time$0.1 - 999.9 \text{ sec.}$, and OFFFall Time$0.1 - 999.9 \text{ sec.}$, and OFFImage: OSC - Contact CheckTest Voltage LevelLess than ac 100V</note2>				
Measurement Accuracy: \pm (1% of setting +0.5% of full scale)□Flashover (ARC) Detection <note2>AC: 1mA -20mA, DC: 1mA -10mA, step 0.1mA□Insulation ResistanceMeasurementOutput VoltageDC: 0.05-1.0 kV, steps 0.001kV Voltage Accuracy: \pm (2% of setting + 0.5% of full scale)Output Voltage MonitorV-monitor: \pm (1% of reading + 0.5% of full scale), 2V resolutionMeasurement Accuracy (RH \leq 60%)\geq500V: 1MQ~1GQ: \pm (3% of reading + 0.1% of full scale) 10GQ~50GQ: \pm (10% of reading + 1% of full scale) < 500V: 1MQ~1GQ: \pm [3% of reading + (0.2 x 500V /Vs)% of full scale]Test Time0.1-999.9 sec., and OFFFall Time0.1-999.9 sec., and OFF□OSC - Contact CheckTest Voltage LevelLess than ac 100V</note2>		0		
□Flashover (ARC) Detection <note2>AC: 1mA -20mA, DC: 1mA -10mA, step 0.1mA□Insulation Resistance MeasurementOutput VoltageDC: 0.05-1.0 kV, steps 0.001kV Voltage Accuracy: ± (2% of setting + 0.5% of full scale)Output Voltage MonitorV-monitor: ± (1% of reading + 0.5% of full scale), 2V resolutionMeasurement Accuracy (RH ≤ 60%)≥500V: 1MΩ~1GΩ: ± (3% of reading + 0.1% of full scale) 1GΩ~50GΩ: ± (7% of reading + 2% of full scale) </note2>		5		
Output VoltageDC: $0.05-1.0 \text{ kV}$, steps 0.001kV Voltage Accuracy: $\pm (2\% \text{ of setting } + 0.5\% \text{ of full scale})$ Output Voltage MonitorV-monitor: $\pm (1\% \text{ of reading } + 0.5\% \text{ of full scale}), 2V \text{ resolution}$ Measurement Accuracy (RH $\leq 60\%$) $\geq 500V$: $1M\Omega \sim 1G\Omega$: $\pm (3\% \text{ of reading } + 0.1\% \text{ of full scale})$ $10G\Omega \sim 50G\Omega$: $\pm (10\% \text{ of reading } + 2\% \text{ of full scale})$ $< 500V$: $1M\Omega \sim 1G\Omega$: $\pm (3\% \text{ of reading } + 1\% \text{ of full scale})$ $< 500V$: $1M\Omega \sim 1G\Omega$: $\pm [3\% \text{ of reading } + (0.2 \times 500V /Vs)\% \text{ of full scale}]$ Test Time $0.1-999.9 \text{ sec.}, \text{ and OFF}$ Fall Time $0.1-999.9 \text{ sec.}, \text{ and OFF}$ $\Box \text{ OSC} - \text{ Contact Check}$ Less than ac 100V				
Output Voltage MonitorVoltage Accuracy: \pm (2% of setting + 0.5% of full scale)Output Voltage MonitorV-monitor: \pm (1% of reading + 0.5% of full scale), 2V resolutionMeasurement Accuracy (RH \leq 60%) $\geq 500V$: $10G\Omega ~ 50G\Omega$: \pm (7% of reading + 2% of full scale) $10G\Omega ~ 50G\Omega$: \pm (10% of reading + 1% of full scale) $< 500V$: $1M\Omega ~ 1G\Omega$: \pm [3% of reading + (0.2 x 500V /Vs)% of full scale]Test Time $0.1-$ 999.9 sec., and OFFFall Time $0.1-$ 999.9 sec., and OFF \Box OSC - Contact CheckTest Voltage LevelLess than ac 100V	Insulation Resistance	e Measurement		
Output Voltage MonitorV-monitor: \pm (1% of reading + 0.5% of full scale), 2V resolutionMeasurement Accuracy (RH \leq 60%) \geq 500V: 1MQ~1GQ: \pm (3% of reading + 0.1% of full scale) 1GQ~10GQ: \pm (7% of reading + 2% of full scale) 10GQ~50GQ: \pm (10% of reading + 1% of full scale) $< 500V$: 1MQ~1GQ: \pm [3% of reading + (0.2 x 500V /Vs)% of full scale]Test Time0.03 – 999.9 sec., and Continuous (IR: 0.3 – 999.9 sec.)Ramp Time0.1– 999.9 sec., and OFFI OSC – Contact CheckLess than ac 100V		DC: 0.05-1.0 kV, steps 0.001kV		
MonitorV-Monitor: \pm (1% of reading + 0.5% of full scale), 2V resolutionMeasurement $\geq 500V$: $1M\Omega \sim 1G\Omega$: \pm (3% of reading + 0.1% of full scale)Accuracy (RH $\leq 60\%$) $1G\Omega \sim 10G\Omega$: \pm (7% of reading + 2% of full scale) $10G\Omega \sim 50G\Omega$: \pm (10% of reading + 1% of full scale) $< 500V$: $1M\Omega \sim 1G\Omega$: \pm [3% of reading + (0.2 x 500V /Vs)% of full scale]Test Time $0.03 - 999.9$ sec., and Continuous (IR: $0.3 - 999.9$ sec.)Ramp Time $0.1 - 999.9$ sec., and OFFFall Time $0.1 - 999.9$ sec., and OFF \Box OSC - Contact CheckTest Voltage LevelLess than ac 100V		Voltage Accuracy: ± (2% of setting + 0.5% of full scale)		
Measurement $1M\Omega \sim 1G\Omega: \pm (3\% \text{ of reading} + 0.1\% \text{ of full scale})$ Accuracy (RH $\leq 60\%$) $1G\Omega \sim 50G\Omega: \pm (7\% \text{ of reading} + 2\% \text{ of full scale})$ $< 500V:$ $10G\Omega \sim 50G\Omega: \pm (10\% \text{ of reading} + 1\% \text{ of full scale})$ $< 500V:$ $1M\Omega \sim 1G\Omega: \pm [3\% \text{ of reading} + (0.2 \times 500V / Vs)\% \text{ of full scale}]$ Test Time $0.03 - 999.9 \text{ sec.}$, and Continuous (IR: $0.3 - 999.9 \text{ sec.}$)Ramp Time $0.1 - 999.9 \text{ sec.}$, and OFFFall Time $0.1 - 999.9 \text{ sec.}$, and OFF $\Box OSC - Contact Check$ Less than ac 100V		V-monitor: ± (1% of reading + 0.5% of full scale), 2V resolution		
$\begin{array}{llllllllllllllllllllllllllllllllllll$		≥500V:		
Accuracy (RH \leq 60%) $10G\Omega \sim 50G\Omega$: \pm (10% of reading + 1% of full scale) $< 500V$: $1M\Omega \sim 1G\Omega$: \pm [3% of reading + (0.2 x 500V /Vs)% of full scale]Test Time $0.03 - 999.9$ sec., and Continuous (IR: $0.3 - 999.9$ sec.)Ramp Time $0.1 - 999.9$ sec., and OFFFall Time $0.1 - 999.9$ sec., and OFF \Box OSC - Contact CheckTest Voltage LevelLess than ac 100V				
< 500V:				
1MΩ~1GΩ: ± [3% of reading + (0.2 x 500V /Vs)% of full scale] Test Time 0.03 – 999.9 sec., and Continuous (IR: 0.3 – 999.9 sec.) Ramp Time 0.1– 999.9 sec., and OFF Fall Time 0.1– 999.9 sec., and OFF OSC – Contact Check Ess than ac 100V	Accuracy (RH \leq 60%)			
Test Time 0.03 – 999.9 sec., and Continuous (IR: 0.3 – 999.9 sec.) Ramp Time 0.1– 999.9 sec., and OFF Fall Time 0.1– 999.9 sec., and OFF OSC – Contact Check Sec. Test Voltage Level Less than ac 100V				
Ramp Time0.1–999.9 sec., and OFFFall Time0.1–999.9 sec., and OFFOSC – Contact CheckTest Voltage LevelLess than ac 100V	Test Time			
Fall Time0.1–999.9 sec., and OFFOSC – Contact CheckTest Voltage LevelLess than ac 100V				
OSC – Contact Check Test Voltage Level Less than ac 100V				
Test Voltage Level Less than ac 100V				
	Test Frequency	600Hz		

No Contact Judge	Measured capacitance comparison.		
Other Functions			
Display:	320 x 240 dot matrix, blue, CCFL back light.		
 Compensation (Cor 	rect)		
Open Circuit:	Leakage current offset compensation for WVAC, WVDC, and IR		
	testing		
PASS/FAIL System			
Indication, Alarm	PASS : (Short Sound)		
	FAIL : High/Low Fail (WV, IR)		
	ARC Fail (WV)		
	Open/Short Fail (OSC) System Error		
Memory Storage	System End		
	20 instrument acture with up to 40 test store can be stored into		
Save/Recall	30 instrument setups with up to 10 test steps can be stored into and recalled from the internal memory.		
Key Lock	Front panel keys can be locked to prevent undesired operation.		
	r ront parlet keys can be looked to prevent undesired operation.		
GPIB (Optional)	Complies with tested values and comparator decision results can		
DC000 (Ctandard)	be stored and output.		
RS232 (Standard)	Standard: RS232, The programming language is SCPI. Data buffer: One set of tested IEEE488.1 and 488.2. The		
	programming language is SCPI.		
	Data buffer: One set of values and comparator decision results		
	can be stored and output.		
Handler interface (S			
Judge Result (O/P)	Output channels Pass/Fail, Total Pass/Fail (Lo: Pass , Hi: Fail)		
····g·····(···)	nEOT: Low active		
Control Signal	Start trigger (I/P): Falling edge trigger.		
	Stop Testing (I/P): Falling edge trigger.		
	Memory recall(I/P): 7 sets		
Power Supply	Internal		
	+Vint: 5V, 40~60mA limit current.		
	Common Int. External		
	+Vext: +3V~+26V allowable.		
	Common Ext.		
Indication, Alarm	PASS(short Sound)		
,	FAIL: High, Low, ARC, System Error(Long Sound)		
Interlock	2 pins connector, pin1 pull-up to digital +V source with 4.7kohm		
	resistor, and pin 2 tied to digital GND.		
· · · · · · · · · · · · · · · · · · ·	ire and Relative Humidity		
Specifications	18 to 28°C (64 to 82°F), ≤ 70% RH.		
Range			
Operable Range	0° C to 45°C, 15% to 95% RH@ \leq 40°C and no condensation.		
Storage Range	-10 to 60°C (-14 to 140°F), ≤ 80% RH.		
Power Requirement Line Veltage			
Line Voltage	AC 100V~240V±10%		
Frequency Bewer	47~63 Hz		
 Power Consumption 	Standby: < 250W		
Consumption	With rated load: <1100W		

Dimension	428 W x 174 H x 600 D mm
Weight	Approx. 40kg
Safety	
Ground Bond	Less than 100m Ω at 25Amp, 2sec
Hi-Pot L + N to	Less than 10mA at WVAC 1.5kV, 60Hz, 3sec no flashover
Earth	happen (ARC level < 8mA, tested by Chroma 19032)
Insulation L + N to	Greater than 20M Ω at 500V dc, 2 sec.
Earth	
Line Leakage	Less than 3.5mA at Vin max (132V at 120V selected voltage),
Current	normal and reverse.

1. 2. When the testing time is less than 0.3 second, the output voltage specification is $\pm(4\% \text{ of setting } + 0.2\% \text{ of full scale})$ Note

It is necessary to calibrate again when the high voltage module on the rear panel is replaced.

AC ARC Validation point is 2.5kV with a 500k Ω resistor.

DC ARC Validation point is 1.5kV with a 500k Ω resistor.

Precaution before Use 3.

The Hipot Tester can output up to 8kV high voltage for external test. Accidents may occur or even cause death if using this Tester incorrectly or in the wrong way. Thus for safety sake, be sure to read the precautions in this chapter to avoid any accidents from happening.

1. High voltage module replacement

If users replace or switch the high voltage modules on the rear panel, to ensure the Tester output is still within the specification, users need to recalibrate the Tester and ensure the specification.

2. Electric shock

To prevent the incident of electric shock from occurring, it is suggested to wear the insulated rubber gloves before using the Hipot Tester for electricity related tasks.

3. Grounding

A safety ground terminal is located at the rear of the Tester chassis; please use a proper tool to ensure it is grounded accurately. If not it would be very dangerous when the power circuit or the connection cable of any device shorts with ground terminal as the chassis may contain high voltage. Anyone who touches the device in this case may cause electric shock. Therefore, it is necessary to connect the safety ground terminal to earth properly as the arrow shows in Figure 3-1.

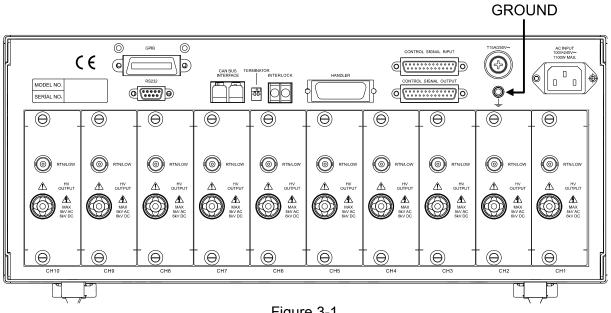


Figure 3-1

4. Connecting test cable to LOW terminal

It is necessary to check if the test cable is connected all the time when the Tester is in use. When connecting a test unit with test cable, connect the RTN/LOW test cable to the UUT first. When the host RTN/LOW terminal is connected, it is very dangerous if the test cable on RTN/LOW terminal is not connected correctly or falls as the entire UUT may full of high voltage.

5. Connecting the test cable to high voltage output terminal

When the RTN/LOW test cable is connected, follow the steps below to connect the high voltage output cable.

- Press **STOP**.
- Ensure the DANGER indicator is off.
- Short the test cable of RTN/LOW and high voltage output to make sure there is no voltage output.
- Plug in the high voltage test cable to high voltage output terminal.
- Last connect the RTN/LOW test cable to the unit under test and then connect high voltage test cable.

6. End the test

When the test is end or the Tester is not in use or is in use but needs to leave it unattended for a while, it is necessary to toggle the power switch to O (i.e. to shut off the power) as Figure 3-2 shows.

STOP 01. 02. 03. 04. 05. 06. 07. 08. 09. 10.	STEP SETTING TEST STEP: 1 GB AC TIGT MODE: 5.000 kV AC AC LOW LIMIT: 0.00 mA LOW LIMIT: 0.00 mA RC LIMIT: 0.00 mA RAC LIMIT: 0.00 mA FEST TIME: CONTINUE CONTINUE IC CHANNEL F5 ECT MODE Remote Lock Offset Error	FUNCTION DANGER TEST IMARY profile 1 2 3 4 5 6 7 8 9 0 • 0.R 0 • 0.R • • 0 • • 0 • • 0 • • • • • • • • • • • • • • • • • •
POWEF	SWITCH	

Figure 3-2

7. Do not touch the hazard areas when the Tester is in test mode

When the Tester is in use, touching the object with high voltage such as UUT, test cable, probe and output terminal is very dangerous.

8. Ensure the test is done

Sometimes users might need to touch the high voltage objects such as UUT, high voltage test cable or output terminal etc. due to configuration or test required change. In that case, please ensure the following:

- * The power switch is turned off.
- The UUT may full of high voltage when completing the Insulation Resistance test; thus it is necessary to follow the description of item 9 and 10 for execution.

<<< Warning! Charging when doing insulation resistance test >>>

9. Charging

When doing insulation resistance test, the UUT, capacitor, test cable, probe and output terminal, even the Tester itself may full of high voltage. The charged voltage may need some time to discharge completely after turning off the power switch. It is

necessary to follow the instruction described above for actions. Do not touch any area that may cause electric shock especially when the power is just turned off.

10. Ensure the charged voltage is fully discharged

The time required for fully discharging the voltage depends on the test voltage applied and the features of UUT. Assuming the high voltage added on the UUT equals the high voltage added to a 0.01uF capacitor and paralleled to a 100M Ω resistance circuit. When the test voltage is 1000V, then it requires approximately 3.5 seconds for the voltage that added to test and on UUT to fall to 30V under after turned off the power. For 500V test voltage, it requires about 2.8 seconds. Assuming the time constant of a UUT is already known, the way described above can be used to calculate the time required for voltage falling to 30V under after powered off by timing the time constant multiple to the time decreased to 30V under as Figure 3-3 shows.

Calculation:
$$\operatorname{Vo} e^{-t/RC} = \operatorname{VIL}$$

Ex : 1000V × $e^{-t/RC} = 30V$
 $e^{-t/RC} = 0.03$

 $-t/RC = \ln 0.03$... t = 3.5 Sec

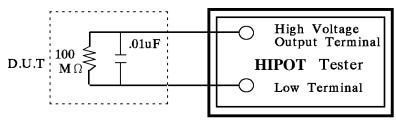


Figure 3-3

11. Remote controlling the Tester

The Hipot Tester can be remote controlled generally for high voltage output via external control signal. When performing it, it is necessary to follow the control guidelines for safety and precautions.

- * Do not allow any accidental high voltage output that may cause hazard.
- * When there is high voltage output from the Tester, do not allow any operator or other personnel to touch the UUT, test cable or probe output and etc.

12. Turning on or off the power switch

Once the power switch is turned off, it needs to wait for a few seconds to turn it on again. Do not power it on and off continuously to avoid occurring errors. It is very dangerous to power it on and off continuously when in high voltage output state in particular. When turning on or off the power, the high voltage output terminal cannot connect to any object to avoid the hazard caused by abnormal high voltage output.

13. Other notices

Do not short-circuit the output line, grounding wire, communication cable or other device's grounding wire or AC power to avoid charging the entire Tester to dangerous voltage. To short-circuit the terminal of high voltage output and LOW, it is necessary to ground the Tester chassis to earth properly.

<<< Emergency Case >>>

14. Process for emergency case

To avoid causing bigger hazard when in emergency situations like electric shock, UUT or Tester burnout, please perform the steps below:

- * First cutoff the power switch.
- * Second unplug the power cord.

<<< Resolving Problems>>>

15. Problems occurred

Problems occurred in the following situation are very dangerous. The output terminal may still have high voltage output even the **STOP** key is pressed; therefore, users should be extremely careful when dealing with it.

- The DANGER LED indicator keeps on when **STOP** key is pressed.
- The DANGER LED indicator is on but the voltage meter has no readings.

When the above situation occurs, shut down the power and unplug the AC power cord immediately. Do not use the device again as failure is awfully hazardous. Please send the hardware back to Chroma or its distributor for repair service.

16. DANGER Indicator failure

When pressing the **START** key the voltage meter has readings but the DANGER LED indicator is still off, it means the indicator may be broken. Please power off the hardware and replace it with another device, then send the broken one back to Chroma or its distributor for repair service.

17. AC INPUT used by the Tester is 100V~240V auto switch and the fuse specification is 15A Slow/250V. Also to avoid electric shock the fuse should be changed when the power cord is not plugged in. Whe replacing, use a flat screwdriver to pry the fuse holder inside the power socket and remove the fuse to replace with a new one by pushing it in gently, and then push the power socket back to its position.

CAUTION Be sure to use the fuse with correct specification or it may cause hazard.

18. Tester is normally operated under AC power

If the selected voltage range for local power supply is unstable, it may cause the device to work inaccurately or abnormally. Thus, please use appropriate equipment such as a power supply regulator to convert it to a suitable one.

19. Tester uses a power transformer with 1100VA or above

When the device to be tested draws a great deal of current, the current (about 10amp) may flow in for more than 10ms before judging for defect item and cutting off the output current. The same situation may occur before test, thus it is necessary to watch out the power cord capacity and the connecting cables used for other instruments or devices.

20. Storage

The temperature and humidity for the Tester is 5°C~35°C, 70% RH in normal. The operation may malfunction if exceeding the range. Do not mount the Tester to a fixed place in case it needs to be removed. The storage temperature for the Tester is from

-10°C to 60°C, \leq 80% RH. If it is not in use for a long time, please pack it with its original package for storage. For proper test and safety measures, do not place the Tester under direct sunlight, high temperature, trembling, humid or dusty area.

21. Warming up

The Tester is activated when power is on; however, in order to meet the specifications for accuracy please warm it up for 15 minutes or above.

22. Safety symbols

The terminal may output lethal voltage. Please read all precautions clearly.

There are detail descriptions in the User's Manual. Please read it to get detail information.

The protection ground terminal to prevent electric shock due to leakage to chassis. It is necessary to connect this ground terminal to earth before using the Scanner.

A waning label to avoid any improper use due to procedure, application or other reasons that may cause injury or death to human.

CAUTION A caution label to avoid any improper use due to procedure, application or other reasons that may cause damage or bad result to the Scanner or the unit under test.

Notice A

A notice label for important information on procedure, application or other areas. Please read it clearly.

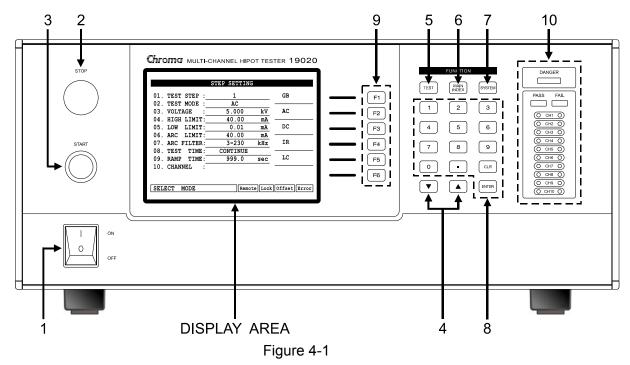
23. Warning label during test

"DANGER – HIGH VOLTAGE TEST IN PROGRESS, UNAUTHORIZED PERSON KEEP AWAY."

24. Common Environment Conditions

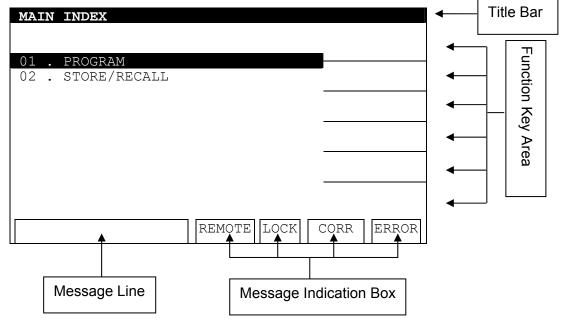
- (1) Indoor use
- (2) Altitude: 2000 m
- (3) Temperature: 5°C to 45°C
- (4) Humidity: Maximum 80%RH at 31°C decreasing to 50%RH at 40°C
- (5) Transient Overvoltage at Mains Supply: 2500V
- (6) Pollution Degree: 2

25. Keep test cable away from the panel

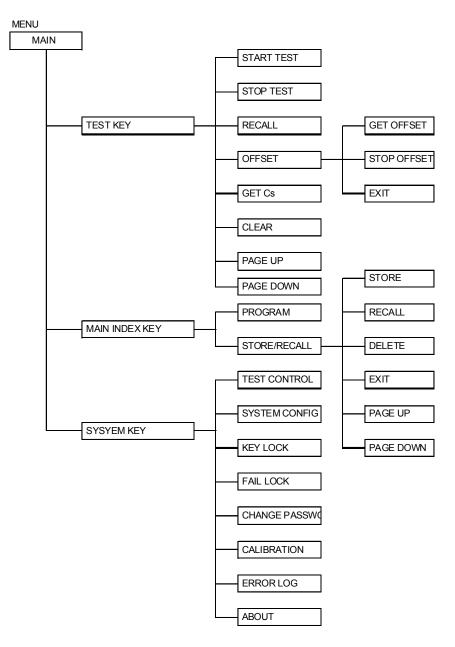

Please keep the high voltage cable or the DUT away from the panel at least 30 cm during operation to avoid the display interference caused by high-voltage discharge.

26. Notices for connecting automated device

- (1) The grounding system of the device and the automated station should be connected together.
- (2) Add anti-interference iron core to the high voltage cable and the 2 ends (device output and DUT) of RTN/LOW test cable with winding at least 1 circle.
- (3) The high voltage and RTN/LOW test cable must be separate from the control cable.
- (4) The high voltage and RTN/LOW test cable must keep proper distance from the scanner panel.


4. Operation

4.1 Front Panel


The front panel is divided into several easy-to-use areas. This section introduces each control item and the information displayed on LCD.

Zoom in of Display Area

Display Area	
Title Bar:	This line of text indicate the setting or test mode at present of the Tester.
Function Key Area:	Different function key descriptions will appear in different screen and the mapping function keys are at the right of LCD. If the description is blank, it indicates the mapping function key is invalid.
Message Line:	This line of text instructs the setting method and range also test time.
Message Indication	Box
REMOTE:	When this box is reversed it indicates the Tester is in Remote state which means it is controlled by PC via GPIB/RS232 cable. At this time all buttons are invalid except STOP and ENTER keys.
LOCK	When this box is reversed it indicates the Tester is in parameter protection mode. Except "TEST", "RECALL" and "KEY LOCK" 3 modes, all other keys are invalid.
CORR	When this box is reversed it indicates the Tester has offset the leakage current of test wires and leads or completed the actions of GET Cs.
ERROR	When this box is reversed it indicates error messages are generated for RS232 or GPIB interface.

Simple Function Flow Chart

Buttons								
(1) Power Switch	:	It is the AC power switch for this Hipot Tester. Read <i>Chapter 3 Precaution before Use</i> in this manual carefully before using this switch.						
(2) STOP Key	:	It is the reset key. When pressed the Hipot Tester will cutoff output immediately or return to ready-to-test state and clear all judgments.						
(3) START Key	:	: It is the test activation key. When pressed, the Hipot Tester is in test state, which means there is output on test terminal and the judging functions are activated at the same time.						
(4) Cursor Keys	:	▲ and ▼ keys are used to move the reserved cursor.						
(5) TEST Key	:	Press this key under each major display mode can return to the "TEST" main screen.						
(6) MAIN INDEX K	ey:	Press this key under each major display mode can return to the "MAIN INDEX" main screen.						
(7) SYSTEM Key	:	Press this key under each major display mode can return to the "SYSTEM" main screen.						
(8) Data Entry Key $0 \ - \ \sim 9$	/s/Pi :	rogram Keys They are numeric/character keys for inputting test parameter data						
		(value or English letters.)						
ENTER CLR	:	It is the input confirmation key for setting test parameters. It is the cancel key for clearing the inputted test parameters when error occurs and entering the new data again.						
(9) Function Keys	:	Different function key descriptions will appear in different screen and the mapping function keys are at the right of LCD. If the description is blank, it indicates the mapping function key is invalid.						
(10) Indicators								
DANGER LED		t is the indicator of test status. When on it means the Tester is						
	r	performing test when on. Do not touch the test terminals as they may contain high voltage output.						
PASS LED	PASS LED: It is the indicator for pass items. CH1~CH10 indicators stand for the test results of CH1~CH10. The rectangular PASS LED is on only							
FAIL LED	: I t <u>c</u>	when the test results of CH1~CH10 are all good. t is the indicator for fail items. CH1~CH10 indicators stand for the est results of CH1~CH10. The rectangular FAIL LED is on when one of the CH1~CH10 test results is bad and will keep on until STOP is pressed.						
		ndicator shows the test result in the channel numbers specified by odel, for instance, the 19020 shows the test result of CH1~CH10						

4.2 Rear Panel

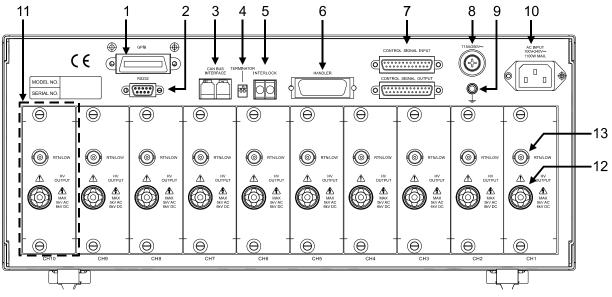


Figure 4-2

(1) GPIB Interface (option):

This is the connector of optional GPIB interface card under IEEE-488-1978 standard. See *Chapter 6 GPIB/RS232 Interface (IEEE-488.2)* for detail usage description.

(2) RS232 Interface:

This is the connector of optional RS232 interface card. GPIB and RS232 cannot be used at the same time.

(3) CAN BUS Interface:

This connector is used for data communication between MASTER and SLAVE.

(4) Terminal Resistance Selector:

This DIP switch is used to set the terminal resistance for CAN BUS interface. It is necessary to set the DIP switch to ON for the first and last Testers on the CAN BUS transmission path.

- (5) **INTER LOCK:** High voltage can only be outputted when these two terminals are short-circuited.
- (6) HANDLER Interface : This is the connector for HANDLER interface. See Chapter 5 HANDLER Interface for detail usage description.

(7) Internal Communication Interface:

This connector is used for control signal transmission between MASTER and SLAVE.

(8) Fuse Holder:

See *Chapter 3 Precaution before Use* for detail specification or the label mark on the rear panel.

(9) GND Terminal:

It is the safety grounding terminal. Please use an appropriate tool to connect it to earth properly. If it is not properly grounded, the Tester chassis may contain high voltage when the power circuit or any device's cable is shorted with the grounding terminal, and it is very dangerous as anyone who touches it may cause electric shock incident. Therefore, the safety ground terminal must be connected to earth properly.

(10) AC Input:

It contains a three-wire AC power socket. The AC power required by the Tester is supplied by this power socket. The power socket or connecting cable can be interrupt device.

(11) High Voltage Module:

It is the combination of high voltage output circuits. Be sure the anchor screws are secured.

(12) High Voltage Output Channel:

It is the high potential terminal for high voltage output. The output terminal that belongs to high potential output terminal usually has high voltage output. Thus, it is very dangerous. Do not touch it especially when the DANGER LED is on with high voltage output.

(13) RTN/LOW Channel:

It is the common test terminal that is the reference terminal for high voltage test. It is the low potential terminal that almost equals to chassis grounding terminal.

4.3 Notices before Using & Procedure

- 1. Before plugging in the AC power cord, make sure the power in use matches the power indicated on the rear panel and the switch is OFF.
- 2. Read the precautions described in *Chapter 3* carefully and keep them in mind before power-on the Tester.
- 3. Once the Tester is powered on, it will start self-test. If any abnormal occurs, turn off the power switch immediately and unplug the power cord.

4.4 Setting SYSTEM Parameters

4.4.1 Entering SYSTEM Setting Screen

Press **SYSTEM** in any screen will show the following:

SYS	STI	<u>9M</u>
01	•	TEST CONTROL
02	•	SYSTEM CONFIG
03		KEY LOCK
04		FAIL LOCK
05		CHANGE PASSWORD
06		CALIBRATION
07		ERROR LOG
08		ABOUT
		REMOTE LOCK CORR ERROR
1		

Procedure

- 1. When title bar shows "SYSTEM", press ▲, ▼ to move the highlight to the item to be set.
- 2. Press **ENTER** to go the sub menu or set the parameter data.
- 3. Press numeric/character keys or Function Keys to set the parameter data.
- 4. When error occurs during data input, press **CLR** to clear it and re-enter. At last, press **ENTER** to confirm the parameter data.

The following table lists the setting items of System and their descriptions.

Setting Items	Description
TEST CONTROL	It sets the related parameters for test. See section 4.4.2 for details.
SYSTEM CONFIG	It sets the system related parameters. See section 4.4.3 for details.
KEY LOCK	It sets the keyboard lock function. See section 4.4.4 for details.
FAIL LOCK	It sets the fail lock function on keyboard. See section 4.4.5 for details.
CHANGE PASSWORD	It changes the user's password. See section 4.4.6 for details.
CALIBRATION	It sets the calibration related function. See section 4.4.7 for details.
ERROR LOG	It logs the errors messages generated when connecting with PC. See section 4.4.8 for details.
ABOUT	It shows the firmware version related description.

4.4.2 Setting TEST CONTROL

In SYSTEM screen, move the highlight to TEST CONTROL and press **ENTER** to go to TEST CONTROL setting screen as shown below:

TEST CONTROL			
01. PASS HOLD	:	0.2 sec	
02. ACV FREQUENCY	:	60 Hz	
03.SOFTWARE AGC	:	ON	
04.MIN. VOLTAGE	:	80%	
05.WV AUTO RANGE	:	OFF	
06.CH AFTER FAIL	:	STOP	
07. RAMP JUDGMENT	:	ON	_
08.DEF. CHANNELS	:	STEUP	
09.SCREEN	:	ON	
10.EOT	:	TEST	
11. DISCH. Vmin	:	OFF	EXIT
0.2-99.95	RE	MOTE LOCK OI	FFSET ERROR

When in TEST CONTROL screen, press \blacksquare , \blacksquare to move the highlight to the item to be set for related setting.

The following table lists the setting items of TEST CONTROL and their descriptions.

No.	Setting Items	Range	Default	Description
01	PASS HOLD	0.2~99.9sec	0.2sec	It sets the time duration the beeper sounds for PASS.
02	AC FREQUENCY	50, 60Hz	60	It sets the frequency of output voltage when doing AC withstand voltage test.
08	SOFTWARE AGC	ON/OFF	ON	It sets the software AGC function to be on or off.
04	MIN. VOLTAGE	OFF,50~95%	80%	It sets the percentage for the output voltage to reach the set voltage.
05	WV AUTO RANGE	ON/OFF	OFF	It sets the range auto change function for withstand voltage test to be on or off.
06	CH AFTER FAIL	STOP/ CONTINUE	STOP	It sets if the channel stops testing when FAIL occurs during test.
07	RAMP JUDGMENT	ON / OFF	ON	When it is set to ON, it will judge if the current readings exceed the high limit during ramp time execution. When it is set to OFF, it won't judge if the current readings exceed the high limit during ramp time execution.
08	DEF. CHANNELS			It sets the default channel to be on. The settings here will become the default of PROGRAM channel. Detail please see <i>Setting DEF. CHANNELS</i> .
09	SCREEN	ON/OFF	ON	It sets the LCD screen to be on or off during test.
10	EOT	TIMER / TEST	TEST	 When EOT set to TIMER, it means nEOT and PASS_FAIL signals act

				 immediately after test time ends without waiting for the high voltage discharge to end. When EOT set to TEST, it means nEOT and PASS_FAIL signals act after the high voltage discharge ends.
11	DISCH. Vmin	ON/OFF	OFF	When set to ON, the discharge circuit will discharge to the voltage lower than safe voltage. When set to OFF, the discharge circuit will discharge to safe voltage.

Notice

The DISCH. Vmin setting is only valid when the EOT is set to TEST. When EOT is set to TIME, the tester will end the testing without discharge, thus the DISCH. Vmin is invalid.

Setting DEF. CHANNELS:

Move the highlight to DEF. CHANNELS and press Function Key [SETUP] to go to DEF. CHANNELS setting screen as shown below:

TEST CONTROL												
FRA	ME	0	1	2	3	4	5	6	7	8	9	NEXT FRAME
	01											
	02											ON
	03											
	04											OFF
СН	05											
011	06											
	07] ————
	8 0											
	09											
	10											EXIT
Remote Lock offset						offset Error						

Press , move the highlight to channel to be set and press Function Key [ON] [OFF] to enable or disable it. Use Function Key [NEXT FRAME] to move the highlight to next FRAME.

Please follow the model to set the output channel, for instance, the 19020 can set the output channel to CH1~CH10 while the 19020-4 can only set the channel to CH1~CH4. The message line on the test screen will show "Module Fail" if set otherwise and the test is unable to start.

4.4.3 Setting SYSTEM CONFIG

In SYSTEM screen, move the highlight to SYSYEM CONFIG and **ENTER** to go to SYSYEM CONFIG setting screen as shown below:

SYSTEM CONFIG			
01. CONTRAST	:	06	UP
02. BEEPER	:	LOW	
03. GPIB	:	<u>UNINSTALLE</u>	D DOWN
04. RS232	:	9600	
05. LINK SETUP	:	MASTER	
06. LINK ADDRESS	:	0	
07. ACA MEAS.	:	RMS	
08. DC ARC RATE	:	1.0	
			EXIT
1-16	R	EMOTE LOCK	OFFSET ERROR

When in SYSTEM CONFIG screen, press **A**, **V** to move the highlight to the item desired for setting the related function.

The following table lists the setting items of SYSYTEM CONFIG and their descriptions.

Setting Items	Range	Default	Description
CONTRAST	1 - 16	06	It adjusts the LCD brightness.
BEEPER	HIGH / LOW / OFF	LOW	It adjusts the beeper volume.
GPIB	UNINSTALLED / ADDRESS = 0~30	03	It sets the GPIB interface address. It shows UNINSTALLED if GPIB card is not installed.
RS232	9600 / 19200 / 38400	9600	It sets the transmission baud rate of RS232 interface.
LINK SETUP	MASTER/SLAVE/SCA NNER	MASTER	It sets the tester to be MASTER or SLAVE when linked for test. Be sure to set it to SCANNER when connecting to A190201/A190202.
LINK ADDRESS	1~9	0	It sets the tester address when linked for test. Note: The tester address is fixed to 0 when set to MASTER.
ACA MEAS	RMS/GENERAL	RMS	It sets the AC current measurement.
DC ARC RATE	1.0~10.0	1.0	The ARC LIMIT setting will multiply this rate for RAMP, DWELL time during DC MODE test.

Notice

When LINK SETUP is set to SLAVE, besides the items "02. SYSTEM CONFIG", "05. CHANGE PASSWORD", "06. CALIBRATION", "07. ERROR LOG" and "08. ABOUT" in the SYSTEM screen, the rest items are all invalid.
 Only the 19020/19020-04 LINK SETUP settings has SCANNER selection

selection.

4.4.4 Setting KEY LOCK

The way to set KEY LOCK:

In SYSTEM screen, move the highlight to KEY LOCK and press **ENTER** to go to KEY LOCK setting screen as shown below:

KEY LOCK				
LOCK KEY:				
USER PASSWORD:				
			EXIT	
	REMOTE	LOCK	CORR	ERROR

- 1. Enter the PASSWORD when in KEY LOCK screen. (The default is 0 0 0 0.)
- Press ENTER will prompt a selection window to select if to lock RECALL MEMORY. Users can use Function Keys [YES], [NO] to select if locking the function of MEMORY RECALL as well.
- When KEY LOCK is ON, the LOCK text is reversed to indicate the host is in parameter protection mode. The "OFFSET", "GET Cs", "CLEAR" in [TEST] and "PROGRAM", "STORE" in [MAIN INDEX] as well as the "TEST CONTROL", "SYSTEM CONFIG", "FAIL LOCK", "CHANGE PASSWORD" and "CALIBRATION" in [SYSTEM] are all invalid for setting.
- 4. When setting KEY LOCK, if RECALL LOCK ON is selected, the MEMORY RECALL function is also invalid.

The way to release KEY LOCK:

If the LOCK box is reversed in power on screen, the KEY LOCK function can be released. Press **SYSTEM** to select KEY LOCK as shown below:

KEY LOCK		
UNLOCK KEY:		
USER PASSWORD:		
		EXIT
	REMOTE LOCK	CORR ERROR

Enter the PASSWORD and press **ENTER**, the LOCK box returns to normal indicating the KEY LOCK is cancelled.

4.4.5 Setting FAIL LOCK

The way to set FAIL LOCK:

In SYSTEM screen, move the highlight to FAIL LOCK and press **ENTER** to go to FAIL LOCK setting screen as shown below:

FAIL	LOCK					
FAIL	KEY:					
USER	PASSWORD	:				
					EXIT	
			REMOTE	LOCK	CORR	ERROR

- 1. Enter the PASSWORD when in FAIL LOCK screen.
- When FAIL LOCK is ON, the LOCK text is reversed to indicate the host is in parameter FAIL LOCK mode. The "RECALL", "OFFSET", "GET Cs" in [TEST] and "PROGRAM", "STORE/RECALL" in [MAIN INDEX] as well as the "TEST CONTROL", "SYSTEM CONFIG", "KEY LOCK", "CHANGE PASSWORD" and "CALIBRATION" in [SYSTEM] are all invalid for setting.
- 3. When FAIL LOCK is set and the test result is FAIL, all keys are invalid except the Function Key [CLEAR] and **STOP** in TEST screen. It is necessary to press the Function Key [CLEAR] to enter the FAIL LOCK password to continue the test.

The way to release FAIL LOCK:

If the LOCK box is reversed in power on screen, the FAIL LOCK function can be released. Press **SYSTEM** to select FAIL LOCK as shown below:

FAIL LOCK		
UNLOCK :		
USER PASSWORD :		
		EXIT
	REMOTE LOCK	CORR ERROR

Enter the PASSWORD and press **ENTER**, the LOCK box returns to normal indicating the FAIL LOCK is cancelled.

4.4.6 Changing PASSWORD

Setting password for KEY LOCK:

In SYSTEM screen, move the highlight to CHANGE PASSWORD and press **ENTER** to go to CHANGE PASSWORD setting screen as shown below:

CHANGE PASSWORD				
USER PASSWORD:				
			EXIT	
	REMOTE	LOCK	CORR	ERROR

- 1. Enter the PASSWORD (enter 0000 if it hasn't been set) and press **ENTER** will prompt a "NEW PASSWORD" window.
- 2. Enter the NEW PASSWORD (maximum 10 characters) and press **ENTER** will prompt a "CONFIRM PASSWORD" window.
- Enter the same password again and press ENTER. A message "CHANGE PASSWORD OK!" will appear to indicate the password has been changed. Press Function Key [EXIT] to quit the Setting Screen.

If the memory has been cleared following the description of "Clear the settings and test procedures in memory" in section 4.4.7, the PASSWORD will return to initial that is 0000.

4.4.7 Setting CALIBRATION

In SYSTEM screen, move the highlight to CALIBRATION and press **ENTER** to go to CALIBRATION setting screen as shown below:

CALIBRATION	
CAL. PASSWORD:∎	
	EXIT
	REMOTE LOCK CORR ERROR

When in CALIBRATION screen, press keys to set the related functions.

The following table lists the setting items of CALIBRATION and their descriptions.

Setting Items	Password	Description
Enter into Calibration Mode	7931	Please refer to Chapter 7 Calibration
		Procedure for related info.
Clear the settings and test procedures in memory		This function will clear all settings and test procedures in memory and return to factory default.

4.4.8 Setting ERROR LOG

In SYSTEM SETUP screen, move the highlight to ERROR LOG and press **ENTER** to go to ERROR LOG screen as shown below:

ERROR LOG		
1. +0 , No error		
		EXIT
	REMOTE LOCK (CORR ERROR

When in ERROR LOG screen it will show the error message generated during connection. The ERR box will return to normal without reverse when in ERROR LOG screen.

4.5 Setting PROGRAM

4.5.1 How to Get in PROGRAM Setting Screen

Press **MAIN INDEX** in any screen will show the following:

MAIN	INDEX		
0.4			
	PROGRAM		
02 .	STORE/RECALL		
		REMOTE LOCK	CORR ERROR

4.5.2 Setting Program Procedure

1. In MAIN INDEX screen, press ▲, ▼ to move the highlight to [PROGRAM] and press ENTER to enter into the program setting screen as shown below:

PROG	RAM			
01.	TEST STEP	:	1	UP
02.	TEST MODE	:	AC	
03.	VOLTAGE	:	OFF	DOWN
04.	HIGH LIMIT	:	0.500 mA-	
05.	LOW LIMIT	:	OFF	NEW
06.	ARC LIMIT	:	OFF -	
07.	TEST TIME	:	3.0 sec	INSERT
08.	RAMP TIME	:	OFF	
09.	FALL TIME	:	OFF	DELETE
10.	CHANNELS	: -	DEFAULT -	
		-		EXIT
1-10)		REMOTE LOCK C	ORR ERROR

- 2. When in PROGRAM screen, use Function Keys [NEW] to add new test steps from 1 to 10.
- 3. Use Function Keys [UP] and [DOWN] to switch to previous or next test step.
- 4. Press ▲, ▼ to move the highlight to the item to be set and press **ENTER** to confirm it.

4.5.3 Selecting Test Mode

1. When in PROGRAM screen, press ▼ to move the highlight to the following position.

PROG	RAM			
01.	TEST STEP	: _	1	AC
02.	TEST MODE	:	AC	
03.	VOLTAGE	: _	OFF	DC
04.	HIGH LIMIT	: _	0.500 mA	
05.	LOW LIMIT	: _	OFF	IR
06.	ARC LIMIT	:	OFF	
07.	TEST TIME	:	3.0 sec	OSC
08.	RAMP TIME	:	OFF	
09.	FALL TIME	:	OFF	PA
10.	CHANNELS	: -	DEFAULT	
				EXIT
SELE	CT MODE		REMOTE LOCK (CORR ERROR

2. Use Function Key [AC], [DC], [IR], [OSC] and [PA] to select the test mode. There are AC / DC / IR / OSC /PA available for selection. Different test mode and model number has different programs for setting.

4.5.4 Description of Parameters

Following explains the parameters set in each test mode.

AC Withstand Voltage (AC) Test Mode (for Model 19020/19020-4/19021)

PROGR	CAM				
01.	TEST STEP	:	1		AC
02.	TEST MODE	:	AC	-	
03.	VOLTAGE	:	0.050	kV	DC
04.	HIGH LIMIT	:	0.500	mA	
05.	LOW LIMIT	:	OFF		IR
06.	ARC LIMIT	:	OFF	-	
07.	TEST TIME	:	3.0	sec	OSC
08.	RAMP TIME	:	OFF	-	
09.	FALL TIME	:	OFF		PA
10.	CHANNELS	:	DEFAULT	-	
11.	SCANNER	:	NONE		EXIT
SELECT MODE REMOTE LOCK CORR ERROR					

VOLTAGE HIGH LIMIT	: It sets the voltage required for AC withstand voltage test. : It sets the high limit of leakage current.
LOW LIMIT	: It sets the low limit of leakage current. The range is smaller than the high limit of leakage current or OFF.
ARC LIMIT	: It sets the ARC limit, 0 means OFF.
TEST TIME	: It sets the time test required, 0 means continue test.
RAMP TIME	: It sets the time required for ramping to the set voltage, 0 means OFF.
FALL TIME	: It sets the time required for falling to low voltage from set, 0 means OFF.

CHANNELS	: It sets the high voltage channel for output. Select Function Key [DEFAULT] means to use the "DEF. CHANNELS" settings in "TEST CONTROL." Select Function Key [SETUP] means to reset the high voltage channel for output.
SCANNER	: It sets the output mode of A190201/A190202 SCANNER. It can select $[P \rightarrow S], [P \rightarrow C], [S \rightarrow C], [P+S \rightarrow C]$ and $[P \rightarrow S+C]$. It is only valid when the LINK SETUP in the SYSTEM of 19020/19020-4 is set to SCANNER.
Notice	Please follow the model to set the output channel, for instance, the

Please follow the model to set the output channel, for instance, the 19020 can set the output channel to CH1~CH10 while the 19020-4 can only set the channel to CH1~CH4. The message line on the test screen will show "Module Fail" if set otherwise and the test is unable to start.

DC Withstand Voltage Test Mode (DC) (for Model 19020/19020-4/19022/19022-4)

PROGR	АМ		
01. 5	FEST STEP	:	1 AC
02. 5	FEST MODE	:	DC
03. 7	VOLTAGE	:	0.050 kV DC
04. H	HIGH LIMIT	:	0.500 mA
05. 1	LOW LIMIT	:	OFF IR
06. 7	ARC LIMIT	:	OFF
07. 5	FEST TIME	:	3.0 sec OSC
08. H	RAMP TIME	:	OFF
09. I	DWELL TIME	:	OFF PA
10. 1	FALL TIME	:	OFF
11. (CHANNELS	:	DEFAULT EXIT
12. 5	SCANNER	:	NONE
SELEC	CT MODE		REMOTE LOCK CORR ERROR

VOLTAGE	: It sets the voltage required for DC withstand voltage test.
HIGH LIMIT	: It sets the high limit of leakage current.
LOW LIMIT	: It sets the low limit of leakage current. The range is smaller than the high limit of leakage current or OFF.
ARC LIMIT	: It sets the ARC limit, 0 means OFF.
TEST TIME	: It sets the time test required, 0 means continue test.
RAMP TIME	: It sets the time required for ramping to the set voltage, 0 means OFF.
DWELL TIME	: It sets the time required for DWELL, 0 means OFF.
	(It does not judge the high and low limit of leakage current during DWELL TIME but only when the set range is within the high limit.)
FALL TIME	: It sets the time required for falling to low voltage from set, 0 means OFF.
CHANNELS	: It sets the high voltage channel for output. Select Function Key
	[DEFAULT] means to use the "DEF. CHANNELS" settings in "TEST
	CONTROL." Select Function Key [SETUP] means to reset the high voltage channel for output.
SCANNER	: It sets the output mode of A190201/A190202 SCANNER. It can select
SCANNER	$[P \rightarrow S], [P \rightarrow C], [S \rightarrow C], [P+S \rightarrow C] and [P \rightarrow S+C]. It is only valid$
	when the LINK SETUP in the SYSTEM of 19020/19020-4 is set to
	SCANNER.
Notice	Please follow the model to set the output channel, for instance, the
	10000 connect the output channel to CLIA. CLIAO while the 10000 A con

Please follow the model to set the output channel, for instance, the 19020 can set the output channel to CH1~CH10 while the 19020-4 can only set the channel to CH1~CH4. The message line on the test screen

will show "Module Fail" if set otherwise and the test is unable to start.

Insulation Resistance Test Mode (IR) (for Model 19020/19020-4/19022/19022-4)

PROGRAM					
01. TEST STEP	:	1	AC		
02. TEST MODE	:	IR			
03. VOLTAGE	:	0.050 kV	/ DC		
04. LOW LIMIT	:	1.0 MΩ	<u>}</u>		
05. HIGH LIMIT	:	OFF	IR		
06. TEST TIME	:	3.0 sec	2		
07. RAMP TIME	:	OFF	OSC		
08. FALL TIME	:	OFF			
09. RANGE	:	AUTO	PA		
10. CHANNELS	:	DEFAULT			
11. SCANNER	:	NONE	EXIT		
SELECT MODE REMOTE LOCK CORR ERROR					

VOLTAGE	: It sets the voltage required for insulation resistance test.
LOW LIMIT	: It sets the low limit of insulation resistance.
HIGH LIMIT	: It sets the high limit of insulation resistance. The range is larger than the
	low limit of insulation resistance or OFF.
TEST TIME	: It sets the time test required, 0 means continue test.
RAMP TIME	: It sets the time required for ramping to the set voltage, 0 means OFF.
FALL TIME	: It sets the time required for falling to low voltage from set, 0 means OFF.
RANGE	: It sets the current test range for insulation resistance, AUTO means

: It sets the current test range for insulation resistance, AUTO means switching the range automatically. The table below lists the relationship between current range and resistance measurement range.

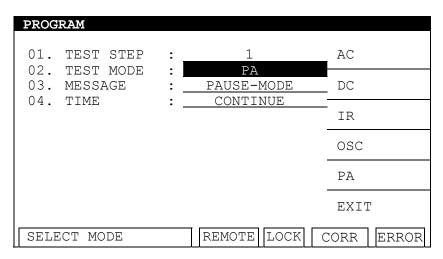
Range	IR Display				
Kange	Set voltage to 50V~499V	Set voltage to500V~1000V			
5mA(2.7~5mA)	0.1ΜΩ~2.4ΜΩ	0.1ΜΩ~7.7ΜΩ			
3mA (0.27~3mA)	0.1ΜΩ~7.7ΜΩ	0.1ΜΩ~24.5ΜΩ			
300uA(27~300uA)	0.1ΜΩ~24.5ΜΩ	0.1ΜΩ~49.9ΜΩ			
		50ΜΩ~245ΜΩ			
30uA(2.7~30uA)	0.1ΜΩ~49.9ΜΩ	0.1ΜΩ~49.9ΜΩ			
	50ΜΩ~245ΜΩ	50ΜΩ~499ΜΩ			
		0.50GΩ~2.45GΩ			
3uA(0.27~3uA)	0.1ΜΩ~49.9ΜΩ	0.1ΜΩ~49.9ΜΩ			
	50ΜΩ~499ΜΩ	50ΜΩ~499ΜΩ			
	0.50GΩ~2.45GΩ	0.50GΩ~4.99GΩ			
		5.0GΩ~49.9GΩ			
300nA(27~300nA)	0.1MΩ~49.9MΩ	0.1MΩ~49.9MΩ			
	50MΩ~499MΩ	50ΜΩ~499ΜΩ			
	0.50GΩ~2.45GΩ	0.50GΩ~4.99GΩ			
		5.0GΩ~49.9GΩ			
		50GΩ~60GΩ			
30nA(1~30nA)		0.1MΩ~49.9MΩ			
		50ΜΩ~499ΜΩ			
		0.50GΩ~4.99GΩ			
		5.0GΩ~49.9GΩ			
		50GΩ~60GΩ			

Notice To select an appropriate IR current range please calculate the current by test voltage and UUT's insulation impedance, and then select the proper current range. It will show UUUUU if the IR display exceeds 60GΩ.

- CHANNELS : It sets the high voltage channel for output. Select Function Key [DEFAULT] means to use the "DEF. CHANNELS" settings in "TEST CONTROL." Select Function Key [SETUP] means to reset the high voltage channel for output.
- SCANNER : It sets the output mode of A190201/A190202 SCANNER. It can select $[P \rightarrow S], [P \rightarrow C], [S \rightarrow C], [P+S \rightarrow C]$ and $[P \rightarrow S+C]$. It is only valid when the LINK SETUP in the SYSTEM of 19020/19020-4 is set to SCANNER.

Open/Short Check (OSC) Test Mode (for Model 19020/19020-4/19021/19022/19022-4)

PROGRAM			
01. TEST STEP	: _	1	AC
02. TEST MODE 03. OPEN	:	OSC 50%	DC
04. SHORT	: _	OFF	
05. CHANNELS 06. SCANNER	: -	DEFAULT NONE	IR
00. SCANNER	• -	NONE	OSC
			PA
			EXIT
SELECT MODE		REMOTE LOCK	CORR ERROR


OPEN	: It sets the OPEN condition for test result judgment. (Compare it with the test reading and the read standard capacitance [Cs].)							
SHORT	: It sets the SHORT condition for test result judgment. (Compare it with the test reading and the read standard capacitance [Cs].)							
CHANNELS	: It sets the high voltage channel for output. Select Function Key [DEFAULT] means to use the "DEF. CHANNELS" settings in "TEST CONTROL." Select Function Key [SETUP] means to reset the high voltage channel for output.							
SCANNER	Voltage channel for output. : It sets the output mode of A190201/A190202 SCANNER. It can select [P→S], [P→C], [S→C], [P+S→C] and [P→S+C]. It is only valid when the LINK SETUP in the SYSTEM of 19020/19020-4 is set to SCANNER.							
✓ Notice	 Before conducting the test or testing the new capacitance UUT or replacing the capacitance UUT in OSC Mode, the action of reading standard capacitance (GET Cs) has to be done first. Before reading standard capacitance (GET Cs), press Function Key [OFFSET] first to conduct OFFSET. OFFSET needs to be done 							

Notice Please follow the model to set the output channel, for instance, the 19020 can set the output channel to CH1~CH10 while the 19020-4 can only set the channel to CH1~CH4. The message line on the test screen will show "Module Fail" if set otherwise and the test is unable to start.

every time the cable or fixture is changed to ensure the test accuracy.

- 3. When conducting tests in OSC Mode, the test condition for judging OPEN/SHORT is the reading of GET Cs.
- 4. Please follow the model to set the output channel, for instance, the 19020 can set the output channel to CH1~CH10 while the 19020-4 can only set the channel to CH1~CH4. The message line on the test screen will show "Module Fail" if set otherwise and the test is unable to start.

Pause Mode (PA) (for Model 19020/19020-4/19021/19022/19022-4)

 MESSAGE
 : It sets the message for pause screen, maximum 13 characters for input.

 TIME
 : It sets the action of PAUSE MODE.

(1) CONTINUE	: The pause mode only ends when START on the
	panel is pressed or START signal on the HANDLER
	card is triggered again.
(2) 0.1~999.9sec :	The pause mode ends when it reaches the time set.

4.6 Managing Memory for Programs

4.6.1 Entering Memory Screen

1. Press **MAIN INDEX** in any screen will appear the following:

MAIN	INDEX				
	PROGRAM				
02.	STORE/RECALL				
		REMOTE	LOCK	CORR	ERROR

2. When "MAIN INDEX" shows on the title bar, press ▲, ▼ to move the highlight to [STORE/RECALL] and press ENTER to go to the setting screen as shown below:

STO	ORI	E/REC	ALL			
01	•	(01)	CHROMA			STORE
02 03	•	(00) (00)				RECALL
04 05 06	• •	(00) (00)				DELETE
08 07 08	• •	(00) (00) (00)				
08 09 10	•	(00) (00) (00)				
IU	•	(00)				EXIT
				REMOTE	LOCK	CORR ERROR

- 3. Use ▲, ▼ to move the highlight to the memory to be processed and follow the instruction of Function Key to read, save or erase that memory.
- 4. The number in parentheses means the test steps contained in the memory.

4.6.2 Saving Memory

Follow the steps below to save the set program data to memory:

1. Use ▲, ▼ to move the highlight to the memory to be saved and press Function Key [STORE].

STOP	RE/	RECA	LL						
			CHROMA						
03		(00) (00)						NEXT	CH.
		(00) (00)							
		(00)							
		(00) (00)							
		(00) (00)							
10	•	(00)						EXI	C
				F	EMOT	Ε	LOCK	CORR	ERROR

- Use 1 2 3 4 4 5 6 7 8 9 0 to select the character for entering the memory name. Then use the numeric/character keys to enter the memory name. Press one numeric/character key repeatedly can switch the number and English letter display in cycle. Pressing Function Key [NEXT CHAR] to move the cursor to the next character position can use the same number/character key to enter the name in sequence.
- 3. Press **ENTER**, a confirmation dialog box will appear for save.
- 4. Press Function Key [YES] to confirm it or press Function Key [NO] to cancel it.

If there is data in the memory, it will be overwritten when save. Make sure it is ok to do so before save.

4.6.3 Deleting Memory

Notice

Follow the steps below to delete the programs from memory:

1. Use ▲, ▼ to move the highlight to the memory to be deleted and press Function Key [DELETE].

01 . (01) CHROMA YES 02 . (00) NO 03 . (00) NO 04 . (00) DELETE MEMORY 1 05 . (00) DELETE MEMORY 1 07 . (00) OB . (00) 08 . (00) OP . (00) 10 . (00) OP . (00)	STORE/REC.	ALL		
08 . (00) 09 . (00)	01 . (01) 02 . (00) 03 . (00) 04 . (00) 05 . (00) 06 . (00)	CHROMA		
REMOTE LOCK CORR ERROR	08 . (00) 09 . (00)	REMOTE LOCK	CORR	ERROR

2. A delete confirmation dialog box is prompted. Press Function Key [YES] to confirm it or press Function Key [NO] to cancel it.

4.6.4 Recalling Memory

Follow the steps below to recall the programs stored in memory:

1. Use ▲, ▼ to move the highlight to memory to be recalled and press Function Key [RECALL].

STORE/REC	ALL	
01 . (01) 02 . (00)	CHROMA	YES
$02 \cdot (00)$ $03 \cdot (00)$ $04 \cdot (00)$		NO
05 . (00) 06 . (00) 07 . (00) 08 . (00) 09 . (00) 10 . (00)	RECALL FROM MEMORY 1	
	REMOTE LOCK	CORR ERROR

2. A recall confirmation dialog box is prompted. Press Function Key [YES] to confirm it or press Function Key [NO] to cancel it.

4.7 Using OFFSET or GET Cs

4.7.1 How to Get in OFFSET or GET Cs Screen

1. Select OFFSET or GET Cs operation in TEST screen as shown below:

MODE	СН	SOURCE	LIMIT		RES.	RECALL
	01	50V	0.0	nF		
	02	50V	0.0	nF		OFFSET
	03	50V	0.0	nF		
	04	50V	0.0	nF		GET Cs
	05	50V	0.0	nF		
OSC	06	50V	0.0	nF		
	07	50V	0.0	nF		
	80	50V	0.0	nF		CLEAR
	09	50V	0.0	nF		
	10	50V	0.0	nF		SLAVE 1 2 3 4 5 6 7 8

2. Press Function Keys [OFFSET] or [GET Cs] to select the desired function. If these two keys are grayed out, it means they are invalid here.

4.7.2 Using GET OFFSET

1. Press Function Key [OFFSET] in TEST screen to go to GET OFFSET screen as shown below:

GET OFFSET	
1.PLEASE OPEN THE OUTPUT TERMINAL.	OFF
TRUTINT.	
PRESS <start> TO START</start>	
	EXIT
STANDBY REMOTE LOCK (CORR ERROR

- 2. GET OFFSET is to offset the leakage current of AC / DC / IR MODE test leads and fixture as well as the stray capacitance of OSC MODE.
- 3. Remove the UUT from fixture and press **START** to offset the leakage current or leakage capacitance.
- 4. The message box [CORR] will be reserved when the test time ends.
- 5. Press Function Keys [OFF] can cancel OFFSET.

4.7.3 Using GET Cs

1. Press Function Key [GET Cs] in TEST screen to go to GET Cs screen as shown below:

GET CS		
 PLEASE CONNECTED THE STANDARD DUT. GET OFFSET BEFORE THAT. ONLY FOR OSC MODE. CS VALUE WILL BE REPLEASED. 		
PRESS <start> TO START</start>		
	EXIT	
STANDBY REMOTE LOCK (CORR	ERROR

Use the standard sample under capacitance test as the UUT and connect it to the 1st channel opened by OSC (this CHANNEL has to be the Master CHANNEL). Press
 START to get the standard capacitance (GET Cs).

4.8 Conducting the Test

4.8.1 Connecting the UUT

First ensure there is no voltage output and the DANGER LED is off. Connect the low potential test cable (black) to the Tester RTN/LOW terminal. Short-circuit the test cable and high voltage output terminal and ensure there is no high voltage output. Next, plug in the high voltage test cable (red or white) to high voltage output terminal. Then connect the low potential test cable to UUT and the high potential test cable to UUT.

4.8.2 Procedure for AC/DC Test

- 1. Connect the UUT properly following the connection method.
- 2. In the power on screen shown below:

ſ	Positi	on 1	Pos	sition 2		Positior	ı 3
TES	T - 1						
MOD	ЕCH	SOUR	E	LIM/T		res.	RECALL
	01	0.050	kv	0.500	mΑ		
	02	0.050	kV	0.500	mΑ		OFFSET
	03	0.050	kV	0.500	mΑ		
	04	0.050	kV	0.500	mΑ		GET Cs
	05	0.050	kV	0.500	mΑ		
AC	06	0.050	kV	0.500	mΑ		
	07	0.050	kV	0.500	mΑ		
	08	0.050	kV	0.500	mΑ		CLEAR
	09	0.050	kV	0.500	mΑ		
	10	0.050	kV	0.500	mA		SLAVE 1 2 3 4 5 6 7 8 9
STA	NDBY			REMO)TE	LOCK	CORR ERROR

Illustration:

TEST 1/2 means there are 2 test steps and it is running the 1st test step at present. AC indicates the test mode. "Position 1" indicates the set voltage, "Position 2" is the high limit set for current, while "Position 3" is the test result.

3. Press **STOP** to prepare for test. The status line shows "STANDBY".

4. Press **START** to activate the test

When this key is pressed it starts to output voltage and the DANGER LED is on. The status line shows a counter to count down. "Position 1" will show the output voltage value, "Position 2" will show the current readings and "Position 3" will show the test result.

5. GOOD Judgment

When all tests are done and the results show PASS, the Tester will see the UUT as a GOOD product and cutoff the output. The HANDLER interface outputs PASS signal and the beeper acts at the same time.

6. NO GOOD Judgment

If the test value is abnormal, the Tester judges it as FAIL and cutoff the output immediately. The HANDLER outputs FAIL signal and the beeper acts at the same time until the **STOP** key on the Tester is pressed. The test result will show FAIL state.

FAIL State:	
Test Result Display	Meaning
FAIL	The current measured exceeds the range or the set high/low
	limit.
ARC	The ARC measured exceeds the set high limit.

To stop test output in any condition, just press **STOP**.

4.8.3 Procedure for IR Test

- 1. Connect the UUT properly following the connection method.
- 2. In the power on screen shown below:

	Po	ositio	on 1	Pos	sition 2		Positic	on 3
ТЕ	ST	- 1,						
MC	DE	СН	SOUR	3	LIM/T		res.	RECALL
	(01	0.050	kV	1.0	MΩ		
	(02	0.050	kV	1.0	MΩ		OFFSET
	(03	0.050	kV	1.0	MΩ		
	(04	0.050	kV	1.0	MΩ		GET Cs
		05	0.050	kV	1.0	MΩ		
ΙF	۲ (06	0.050	kV	1.0	MΩ		
	()7	0.050	kV	1.0	MΩ		
	(3 8 C	0.050	kV	1.0	MΩ		CLEAR
	() 9	0.050	kV	1.0	MΩ		
	-	10	0.050	kV	1.0	MΩ		SLAVE 1 2 3 4 5 6 7 8 9
SI	FANE	BY			REMO)TE	LOCK	CORR ERROR

Illustration:

TEST 1/2 means there are 2 test steps and it is running the 1st test step at present. IR indicates the test mode. "Position 1" indicates the set voltage, "Position 2" is the low limit set for insulation impedance, while "Position 3" is the test result.

- 3. Press **STOP** to prepare for test. The status line shows "STANDBY".
- 4. Press **START** to activate the test

When this key is pressed it starts to output voltage and the DANGER LED is on. The status line shows a counter to count down. "Position 1" will show the output voltage value, "Position 2" will show the current readings and "Position 3" will show the test result.

5. GOOD Judgment

When all tests are done and the results show PASS, the Tester will see the UUT as a GOOD product and cutoff the output. The HANDLER interface outputs PASS signal and the beeper acts at the same time.

6. NO GOOD Judgment

If the test value is abnormal, the Tester judges it as FAIL and cutoff the output immediately. The HANDLER outputs FAIL signal and the beeper acts at the same time until the **STOP** key on the Tester is pressed. The test result will show FAIL state.

FAIL State:	
Test Result Display	Meaning
	The resistance measured exceeds the range or the set
	high/low limit.

To stop test output in any condition, just press **STOP**.

4.8.4 Procedure for OSC Test

- 1. Connect the UUT properly following the connection method.
- 2. In the power on screen shown below:

P	ositior	n 1 🕴 🗍	Position 2		Positio	n 3
TEST	- 1	/2				
MODE	СН	SOURCE	LIMIT		RES.	RECALL
	01	50V	0.0	nF		
	02	50V	0.0	nF		OFFSET
	03	50V	0.0	nF		
	04	50V	0.0	nF		GET Cs
	05	50V	0.0	nF		
OSC	06	50V	0.0	nF		
	07	50V	0.0	nF		
	08	50V	0.0	nF		CLEAR
	09	50V	0.0	nF		
	10	50V	0.0	nF		SLAVE 1 2 3 4 5 6 7 8
STAN	NPV		DEMO	אחד	LOCK	CORR ERROR

Illustration:

OSC means it is in Open Short Check mode. "Position 1" is the setting voltage and "Position 2" is the standard capacitance (Cs) while "Position 3" shows the test result.

- 3. Press **STOP** to prepare for test. The status line shows "STANDBY".
- 4. Press **START** to activate the test

When this key is pressed it starts to output voltage and the DANGER LED is on. The status line shows a counter to count down. "Position 1" will show the output voltage value, "Position 2" will show the current readings and "Position 3" will show the test result.

5. GOOD Judgment

When all tests are done and the results show PASS, the Tester will see the UUT as a GOOD product and cutoff the output. The HANDLER interface outputs PASS signal and the beeper acts at the same time.

6. NO GOOD Judgment

If the test value is abnormal, the Tester judges it as FAIL and cutoff the output immediately. The HANDLER outputs FAIL signal and the beeper acts at the same time until the **STOP** key on the Tester is pressed. The test result will show FAIL state.

Test Result Display	Meaning
FAIL	The Open/Short Capacitance reading exceeds the OPEN/ SHORT setting.

To stop test output in any condition, just press **STOP**.

- Notice
 Every time the cable or fixture is changed for OSC, be sure to run OFFFSET in advance to ensure the test accuracy.
 - It is necessary to run GET Cs when testing a new UUT or replacing a UUT for OSC test. Read the standard capacitance from the test sample as the standard value.
 - 3. For using OSC GET CS, see section *4.7.3* for detail information.

4.8.5 Test Procedure for PA Test

- 1. Connect the UUT properly following the connection method.
- 2. In the power on screen shown below:

	Γ	Posi	tion 1		Posit	ion 2	
	TEST	- 1	/2				
	MODE	СН	SOURE	LIMIT	RE	s./	RECALL
		01	PAUSE-MODE	2		•	
		02	PAUSE-MODE	2			OFFSET
		03	PAUSE-MODE	2			
		04	PAUSE-MODE	2			GET Cs
		05	PAUSE-MODE	2			
	PA	06	PAUSE-MODE	2			
		07	PAUSE-MODE	2			
		80	PAUSE-MODE	2			CLEAR
		09	PAUSE-MODE	2			
		10	PAUSE-MODE	3			SLAVE 1 2 3 4 5 6 7 8 9
Г	STAN	DBY		REMO'	TE LC	CK C	ORR ERROR

Illustration:

PA means it is in pause mode. "Position 1" is the message set to display and "Position 2" is the test result.

- 3. Press **STOP** to prepare for test. The status line shows "STANDBY".
- 4. Press **START** to activate the test

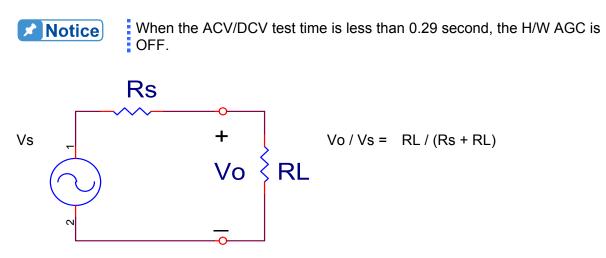
When this key is pressed it starts PA MODE. If action time is set for PA MODE, the status line will show a counter to count down. If the test time is set to CONTINUE, the status line will show PAUSE and wait for the input of START signal to end PA MODE.

4.8.6 Auto Range

1. Set Auto Range to ON.

2. As Position 1 shows in the figure below setting it to high current range.

Position 1							
TEST	- 1	/2					
MODE	СН	SOURCE	LIMIT	V	RES.	RECALL	
	01	0.500kV	10.00	mΑ			
	02	0.500kV	10.00	mΑ		OFFSET	
	03	0.500kV	10.00	mΑ			
	04	0.500kV	10.00	mΑ		GET Cs	
	05	0.500kV	10.00	mΑ			
AC	06	0.500kV	10.00	mΑ			
	07	0.500kV	10.00	mΑ			
	80	0.500kV	10.00	mΑ		CLEAR	
	09	0.500kV	10.00	mΑ			
	10	0.500kV	10.00	mA		SLAVE 12345678	
STAN	DBY		REMO)TE	LOCK	CORR ERROR	


3. If the tested current can be displayed by low current range 0.6 seconds before the test ends, the current range will change the range to low current range automatically as Position 1 shows in the figure below.

			Position 1]	
TEST	- 1	/2		J	
MODE	CH	SOURCE	LIMIT	RES.	RECALL
	01	0.500kV	0.050 mA		
	02	0.500kV	0.050 mA		OFFSET
	03	0.500kV	0.050 mA		
	04	0.500kV	0.050 mA		GET Cs
	05	0.500kV	0.050 mA		
AC	06	0.500kV	0.050 mA		
	07	0.500kV	0.050 mA		
	8 0	0.500kV	0.050 mA		
	09	0.500kV	0.050 mA		
	10	0.500kV	0.050 mA		SLAVE 1 2 3 4 5 6 7 8 9
TEST	: 0.	0s	REMOTE	LOCK	CORR ERROR

4.8.7 Hardware/Software AGC

AGC function is used due to load effect (the output voltage changes when the Load changes.)

- ACV : H/W AGC always ON, S/W AGC default is ON but can be set to OFF.
- DCV : H/W AGC always ON, S/W AGC default is ON but can be set to OFF.
- IR : No H/W AGC, S/W AGC is ON but can be set to OFF.
- OSC : No H/W AGC, S/W AGC is OFF.

- 1. H/W AGC: Since the load effect caused Vo<Vs, the hardware comparator circuit is used to make Vo compensate voltage to be the same as within Vs within 0.1sec.
- 2. S/W AGC: This tester uses software AGC only in IR MODE. Since the software compensation is slow, it would not cause transient voltage shock to DUT and the common IR impedance (RL) is much larger than the output impedance (Rs) of this tester, thus Vo≒Vs.

5. HANDLER Interface

5.1 Introduction

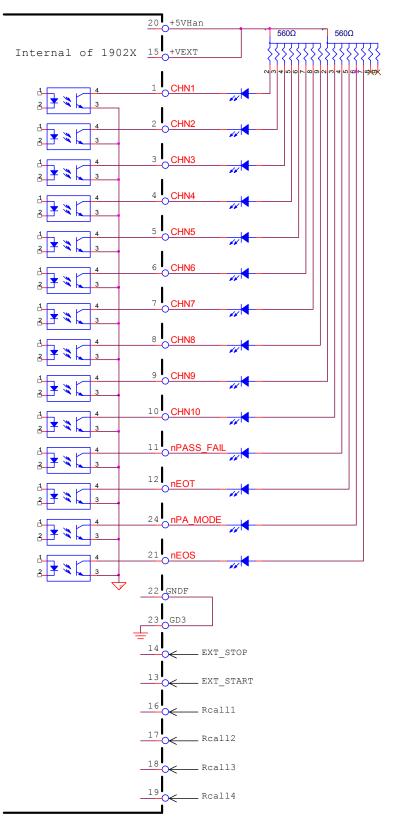
The HANDLER interface socket can be purchased for the Tester rear panel. When it is desired to control the Tester output via external signal or to send the signal outside, the HANDLER card can be inserted for external control.

5.2 Specification

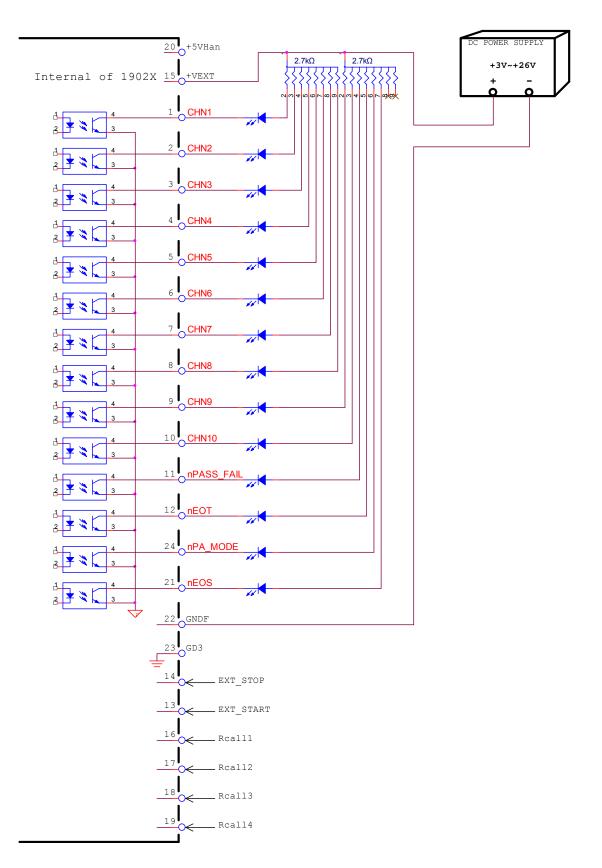
5.2.1 Driving Capability

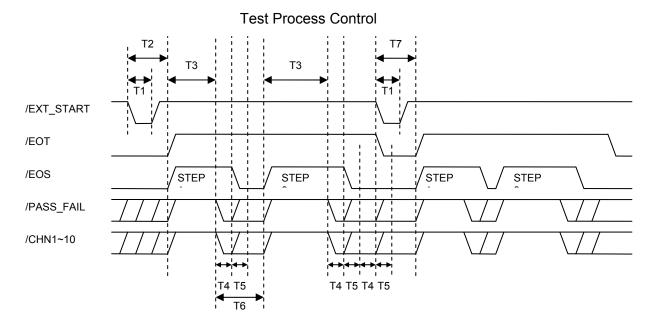
Internal Signal Output Specification: DC 5V, 40~60mA External Signal Output Specification: DC 3V~26V (HIGH), 10mA± 4mA, current limit is 10mA± 4mA for every circuit.

5.2.2 Pin Assignment


The each pin assignment of HANDLER is listed in the table below:

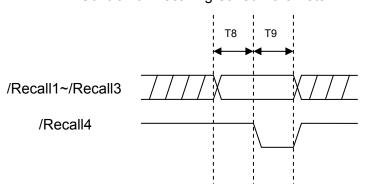
Pin No.	Signal	Input/Output	Description
1	CHN1		
2	CHN2		
3	CHN3		
4	CHN4		The output signals of CHN1, 10 indicate the
5	CHN5	Output	The output signals of CHN1~10 indicate the test results of CH1~10.
6	CHN6	Output	Lo: PASS, Hi: FAIL.
7	CHN7		LU. 1 A00, TII. 1 AIL.
8	CHN8		
9	CHN9		
10	CHN10		
11	PASS_FAIL	Output	The output signal of PASS_FAIL indicates the test result of all channels when each Step ends. Lo: TOTAL PASS, Hi: TOTAL FAIL.
12	nEOT	Output	The output signal of nEOT shows if the test procedure is ended. When the signal is HIGH, it means the test procedure is under execution. When the signal is LOW, it means the test procedure has been ended or the tester is standby.
13	nEXT_START	Input	It is the external START signal input that starts when LOW.
14	nEXT_STOP	Input	It is the external STOP signal input that stops when LOW.


15	+VEXT	_	It is the external DC voltage input. The input voltage range is between +3V~+26V.
16	nRecall1		nRecall1~nRecall3 signals indicate the
17	nRecall2		memory position to be read.
18	nRecall3		It uses 3 bits to present 7 test steps.
19	nRecall4	Input	The input format is binary code (001~011) (nRecall1 is the low bit, while nRecall3 is the high bit.) 001 means to recall memory 1 111 means to recall memory 7 nRecall4 signal is the switch for reading memory. When nRecall4 inputs a LOW level signal, the memory data can be retrieved.
20	+5VHan	—	It is the internal DC voltage output.
21	nEOS	Output	The output signal of nEOS indicates if the test is ended. When the signal is HIGH, it means the test is undergoing. When the signal is LOW, it means the test is ended or standby.
22	GNDF	_	It is the external DC voltage input and the low voltage terminal for input/output signal.
23	GD3		It is the low voltage terminal for internal voltage output.
24	nPA_MODE	Output	This signal will change once when running PA Mode.


5.3 Example of External Control Circuit

5.3.1 Example of Using Internal Power Supply

5.3.2 Example of Using External Power Supply



5.4 Timing Diagram

Time	Limit	Description
T1	> 10mS	It sets the time required for external trigger signal (/EXT_START) to sustain.
Т2	< 20mS	It sets the time for clear from external trigger signal (/EXT_START) to /EOT signal.
Т3	-	It sets the time required for test.
T4	> 5mS	It sets the waiting time for /PASS_FAIL signal to be stable.
Т5	> 5mS	It sets the waiting time for /EOT and /EOS signals to be stable.
T6	Note	It is the time spent to switch step.
T7	Note	It is the time spent for starting 2 nd test.

Note The value is varied by conditions. For instance, the T6 under the condition of Screen On is about 320mS and under the condition of Screen Off is about 40mS, while the T7 under the condition of Screen On is about 280mS and under the condition of Screen Off is about 60mS. (The values mentioned here are estimated, the exact values shall base on the actual measurement.)

Time	Limit	Description
T8	> 5mS	It sets the time for /Recall1~/Recall3 signal to sustain.
Т9	> 5mS	It sets the time for /Recall4 signal to sustain.

6. GPIB/RS232 Interface (IEEE-488.2)

6.1 Introduction

The Tester can be controlled remotely by PC for data transmission through RS232 or GPIB (IEEE 488-1978) interface.

6.2 GPIB Interface (Option)

6.2.1 Applied Standard

The tester applies the IEEE488-1978 standard.

6.2.2 Interface Capability

Code	Meaning
SH1	Source Handshake
AH1	Acceptor Handshake
T4	Basic Talker requirement
L4	Basic Listener requirement
SR1	Service request requirement
RL1	All remote/local requirement
PP0	No Parallel poll requirement
DC1	All device clear requirement
DT0	No Device trigger requirement
C0	No controller requirement

6.2.3 Interface Message

The table below lists the Tester's reaction to the following interface messages:

Interface Message	Meaning	Reaction
GTL	Go To Local	It switches the Tester to Local mode.
SDC	Selected Device Clear	It clears the selected device.
LLO	Local Lockout	It is prohibited to use ENTER to switch to Local mode.
IFC	Interface Clear	It clears the GPIB interface.

6.2.4 Command Format

The function of GPIB interface is to input the ASCII code composed commands in order to do remote control and setting. The command string is formed by [command+parameter]. Semicolon ";" can be used to connect any two commands with end code at last. The End Code is in one of the following formats which can be identified by the Tester itself:

End Code

LF	
CR+LF	
EOI	
LF+EOI	
CR+LF+EOI	

6.2.5 Panel Description

1. Setting Address

- When "SYSTEM" appears on the title bar, press ▲, ▼ to move the highlight to [SYSTEM CONFIG] and press **ENTER** to go to SYSTEM CONFIG screen.
- Press ▲, ▼ again to move the highlight to [GPIB] and use the Function Keys [UP] and [DOWN] to select the GPIB Address.
- When the setting is done, press Function Key [EXIT] to end the setting.

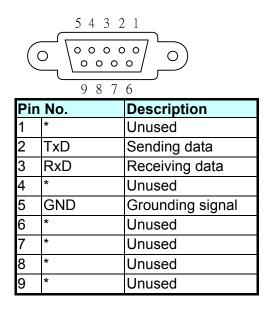
2. Remote & Panel Control

- When the message box "Remote" is reversed it indicates the Tester is in remote control state.
- When in remote control state, it can use the **ENTER** key on panel to switch the Tester to panel control state.
- When in remote control state, all keys are invalid except ENTER (switch to panel control state) and STOP (reset the Tester) keys.
- The GPIB LLO [Local Lockout] command can be used to make **ENTER** key invalid.

6.3 RS232 Specification

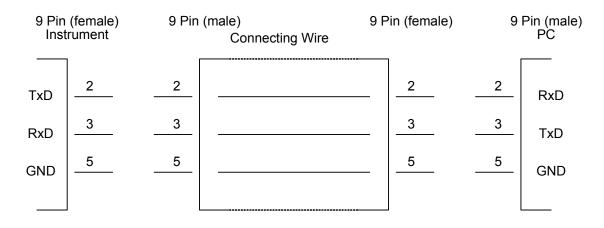
6.3.1 Data Format

Baud Rate: 9600/19200/38400 Transmission Bit: 1 start bit + 8 data bits + 1 stop bit

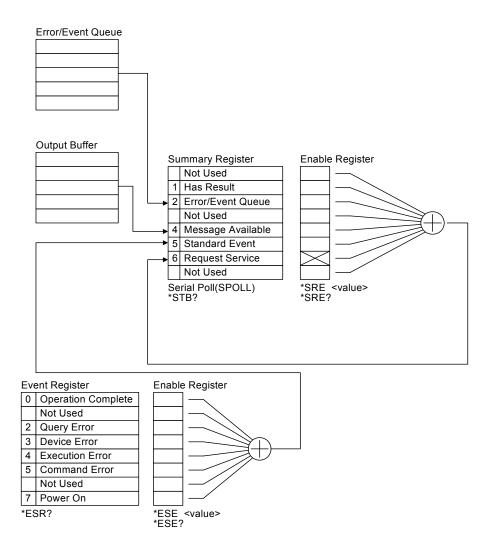

6.3.2 Command Format

The function of RS232 interface is to input the ASCII code composed commands in order to do remote control and setting. The command string is formed by [command+parameter]. Semicolon ";" can be used to connect any two commands with end code at last. The End Code one of the following formats:

End Code)
LF	
CR+LF	


6.3.3 Connector

The RS232 connector of the Tester is a female 9-pin connector.



6.3.4 Connection

The RS232 connector of the Tester is a female 9-pin connector.

6.4 Structure of Remote Interface

6.5 Commands for Remote Interface

6.5.1 Commands Summary

```
IEEE 488.2 Command
*CLS
*ESE
        <enable value>
*ESE?
*ESR?
*IDN?
*OPC
*OPC?
*PSC
        <boolean>
*PSC?
*RST
*RCL <register number>
*SAV <register number>
*SRE < enable value>
```

*SRE?

*STB?

The parameter syntax of SCPI command includes:

- (1) Use "< >" to indicate the defined parameter format of standard SCPI command.
- (2) "< numeric value >" is a decimal data while "< boolean >" is Boolean program data with value 0 or 1.
- (3) Use vertical bar "|" to indicate parameter OR.
- (4) "< channel list >" indicates the Channel status and expression is: (@C1, C2...) where C1, C2... indicates Channel number. The format of this model's Channel number is 3 digits, the first digit is Frame index and the last two seconds are Channel index, for example, the Channel number of Master (Frame 0) Channel 4 (04) is 004.

SCPI Command

```
:MEMory
 :DELete
[ [:NAME] <name>
:LOCation <register number>
:STATe
  :DEFine <name>, <register number>
:DEFine? <name>
:FREE
  | :STATe?
:NSTates?
[:SOURce]
  :SAFety
[:CHANnel]<n>
  :FETCh? [<item>][,<item>]
:RESult
| :ALL
  [:JUDGment]?
  :MMETerage?
  Τ
         :MODE?
    | :OMETerage?
  :TIME
  Т
    | | | [:ELAPsed]
  Т
    | :DWELl?
  |
             | :FALL?
  | :RAMP?
  Ι
         | | | [:TEST]?
T
  :AREPort <boolean> | ON | OFF (RS232 only)
T
  :AREPort?
                                 (RS232 only)
L
  :COMPleted?
  :STEP<n>
  [ [:JUDGment]?
  | :MMETerage?
| :OMETerage?
I :TIME
[:ELAPsed]
| :DWELl?
| | | :FALL?
| | | :RAMP?
[:TEST]?
:FRAMe<f>
  :RESult
    | :STEP<n>
| | [:JUDGment]?
```

| :MMETerage? | | :OMETerage? | | :TIME | L | | | [:ELAPsed] L | | | :DWELl? | | | **:**FALL? | | | **:**RAMP? | | | [:TEST]? | :STARt | | [:ONCE] :CORRection | | | :OPEN GET | OFF | | :OPEN? | | :SAMPle GET | | :SAMPle? :STATus? | :STEP<n> :AC | :CHANnel | | [:CLOSe] <channel list> | | [:CLOSe]? | | :DEFault | | :ON | | :STATe? | :PSC P | S | PS, S | C | SC | :PSC? [:LEVel] <number value> [:LEVel]? :LIMit | :ARC <number value> | :ARC? | [:HIGH] <number value> [:HIGH]? :LOW <number value> | :LOW? :TIME | :FALL <number value> :FALL? :RAMP <number value> :RAMP? [:TEST] <number value> [:TEST]? :DC | :CHANnel | [:CLOSe] <channel list> [:CLOSe]? | :DEFault :ON | | :STATe? | :PSC P | S | PS, S | C | SC | :PSC? [:LEVel] <number value> | [:LEVel]? | :LIMit | | :ARC <number value> | :ARC? | [:HIGH] <number value> | [:HIGH]? | | :LOW <number value> 1 1 | | :LOW?

:TIME | | :DWELl <number value> Τ | | :DWELl? Τ | :FALL <number value> | :FALL? | :RAMP <number value> | | :RAMP? | | [:TEST] <number value> | | [:TEST]? :DELete :IR | :CHANnel | | [:CLOSe] <channel list> | | [:CLOSe]? | :DEFault | | :ON | | :STATe? | :PSC P | S | PS, S | C | SC | :PSC? [:LEVel] <number value> [:LEVel]? :LIMit | :HIGH <number value> | :HIGH? [:LOW] <number value> [:LOW]? :RANGe | :UPPer <number value> :UPPer? | [:LOWer] <number value> | [:LOWer]? :AUTO <boolean> | ON | OFF | :AUTO? :TIME | :FALL <number value> :FALL? :RAMP <number value> :RAMP? [:TEST] <number value> [:TEST]? :OSC :CHANnel [:CLOSe] <channel list> [:CLOSe]? :DEFault :ON :STATe? :PSC P | S | PS, S | C | SC | :PSC? :LIMit | | [:OPEN] <number value> [:OPEN]? | | :SHORt <number value> | | :SHORt? :PAuse | [:MESSage] <string data> [:MESSage]? | :TIME | | [:TEST] <number value> | | | [:TEST]?

```
| | :MODE?
| | | :SET?
| | :STOP
:SYSTem
| :ERRor
| | [:NEXT]?
| :KLOCk <boolean> | ON | OFF
                                  (RS232 only)
 :KLOCk?
| :LINK
| | :ADDRess?
 | :MASTer?
:LOCK
| :OWNer?
| :RELease
                                    (RS232 only)
| :REQuest?
                                    (RS232 only)
:TCONtrol
| :AGC
| | [:SOFTware] <boolean> | ON | OFF
| | [:SOFTware]?
| :CHANnel
| | [:DEFault]
  | | | [:CLOSe] <channel list>
    | | [:CLOSe]?
  | :DISCharge
  | | :VMINimum ON | OFF | <boolean>
    | :VMINimum?
   :EOT TIMer | TEST
:EOT?
   :FAIL
  | :OPERation STOP | CONTinue
  | :OPERation?
  :RJUDgment <boolean> | ON | OFF
  :RJUDgment?
   :SCReen <boolean> | ON | OFF
   :SCReen?
   :TIME
  | :PASS
  | | [:HOLD] <number value>
| | [:HOLD]?
:VPERcent
| [:MINimum] <number value> |OFF
| [:MINimum]?
:WRANge
| [:AUTO] <boolean> | ON | OFF
|
        [:AUTO]?
  :WVAC
  | | :FREQuency <number value>
:FREQuency?
:VERSion?
```

6.5.2 Command Description

IEEE 488.2 Command

```
*CLS
```

It clears the data structure of status in the following actions: Clear the standard event register. Clear the byte register except MAV bit (bit 4).

*ESE < decimal data>

It sets the value for standard event enable register. The value is a <decimal data> within $0\sim255$.

*ESE?

It queries the standard event enable register value of device. The output format is <decimal data> within 0~255.

*ESR?

It queries the standard event register value of device. The register is cleared to 0 when this command is executed. The output format is <decimal data> within $0\sim255$.

*IDN?

It reads the basic data of device. The output format is divided by comma into 4 columns, which are manufacturer, device model no., serial no. and firmware version.

*OPC

It completes the operation.

*OPC?

It queries the operation for completeness. An ASCII character "1" is output when done.

*PSC 0 / 1

It clears the power on state.

*PSC?

It queries the power on state for clearing. The output format is an ASCII character "1" or "0".

*RST

It resets the device by stopping the test.

*RCL <decimal data>

It is a read back command.

This command reads back the settings saved in the memory of the device. The range of < *decimal data* > is between $1 \sim 30$. (This command is invalid when the value is 0.)

*SAV <decimal data>

It is a save command.

This command is to save the settings at present of the device to memory. The range of < *decimal data* > is between $1 \sim 30$. (This command is invalid when the value is 0.)

*SRE <decimal data>

It sets the value for service request register. The value is a *decimal data* within 0~255.

*SRE?

It reads the value of service request enable register. The output format is <decimal data> within 0~255.

*STB?

It reads the value of status bit register. The output format is <decimal data> within $0\sim255$.

SCPI Command

:MEMory:DELete[:NAME] <name>

It deletes the parameter data specified by <name> in main memory. <name> is a string with maximum 13 characters. .

Example:	Input the command "MEM:DEL 123".
Description:	It deletes the parameter data named 123 in main memory.

:MEMory:DELete:LOCation <register number>

It deletes the parameter data specified by <register number> in main memory. <register number> is an integer with the range between 0~30 where 0 means to clear the memory.

Example:	Input the command "MEM:DEL:LOC 1".
Description:	It deletes the parameter data number 1 in main memory.

:MEMory:STATe:DEFine <name>, <register number>

It sets a name for memory specified by <register number>. <register number> is an integer with the range between 1~30.

Example:	Input the command "MEM:STAT:DEF TEST,1".
Description:	It defines the parameter data named TEST of the 1 st memory set in
	main memory.

:MEMory:STATe:DEFine? <name>

It queries the memory's <register number> specified by <name>.

Example:	Input the command "MEM:STAT:DEF? TEST".
	The Tester returns "1".
Description:	The returned value "1" indicates the parameter data named TEST is
	located at the 1 st set.

:MEMory:FREE:STATe?

It queries the unused capacity in main memory.

Example:	Input the command "MEM:FREE:STAT?".
	The Tester returns "27".
Description:	The returned value "27" indicates the remaining data parameters for set.

:MEMory:NSTates?

It queries the capacity of main memory. The value returned is the parameter maximum plus 1 for *SAV and *RCL commands.

Example:	Input the command "MEM:NST?".
	The Tester returns "31".
Description:	The returned value "31" indicates the storage capacity of main memory is 30 sets (1-30).

[:SOURce]:SAFety[:CHANnel]<m>:FETCh? [<item>][, <item>]

It queries the host for the measured result when the Screen sets to On. The format of variable <m> at the end of [:CHANnel] is 3 digits. The first digit is Frame index in the range of 0~9 and the last two digits are Channel index in the range of 01~10 (19020/19021/19022) or 01~04(19020-4/19022-4). When the variable is ignored it is 001 to indicate Channel 1 of the Master. <item> is string as listed below:

String	Returned Data
STEP	The present STEP No.
MODE	The present MODE
OMETerage	The present reading of output meter
MMETerage	The present reading of measure meter
RELapsed	The time executed for RAMP
RLEave	The time remained for RAMP
DELapsed	The time executed for DWELL
DLEave	The time remained for DWELL
TELapsed	The time executed for TEST
	When the Test Time is limited it responds the time remained.
	When the Test Time is set to CONT, it responds 9.9000001E+37.
TLEave	The time remained for TEST
	When the Test Time is limited it responds the time remained.
	When the Test Time is set to CONT, it responds 9.9000001E+37.
FELapsed	The time executed for FALL
FLEave	The time remained for FALL

Example:	Input the command SAF:CHAN003:FETH? STEP,MODE,OMET
	The Tester returns 1,AC,+5.000000E+02.
Description:	The returned string 1,AC,+5.000000E+02 indicates the result of STEP, MODE and output result for CH3 of Address 0 host is STEP1, AC MODE, 0.500kV.

[:SOURce]:SAFety[:CHANnel]<m>:RESult:ALL[:JUDGment]?

It queries all judgment results when the Screen sets to On. The format of variable <m> at the end of [:CHANnel] is 3 digits. The first digit is Frame index in the range of 0~9 and the last two digits are Channel index in the range of 01~10 (19020/19021/19022) or 01~04(19020-4/19022-4). When the variable is ignored it is 001 to indicate Channel 1 of the Master. The return format is First Step Result, Second Step Result, ..., Last Step Result. The meaning of Code is listed as below:

Mode	A	AC		DC		IR		OSC		L
Code	HEX	DEC								
STOP									70	112
TESTING									73	115
PASS									74	116
HIGH FAIL	21	33	31	49	41	65				
LOW FAIL	22	34	32	50	42	66				
ARC FAIL	23	35	33	51						
OCP	24	36	34	52	44	68	64	100		
SHORT FAIL							61	97		
OPEN FAIL							62	98		

Code of Test Result

[:SOURce]:SAFety[:CHANnel]<m>:RESult:ALL:MMETerage?

It queries the readings of MEASURE METER in all STEPs when the Screen sets to On. The format of variable <m> at the end of [:CHANnel] is 3 digits. The first digit is Frame index in the range of 0~9 and the last two digits are Channel index in the range of 01~10 (19020/19021/19022) or 01~04(19020-4/19022-4). When the variable is ignored it is 001 to indicate Channel 1 of the Master.

Example:	Input the command SAF:CHAN004:RES:ALL:MMET? The Tester returns 7.000000E-05, 5.000000E-05, 4.000000E-05, 3.000000E-05, 2.000000E-04,
	7.000000E-05, 5.000000E-04, 3.000000E-04.
Description:	The returned string is the result queried for MEASURE METER by CH4 STEP1~STEP10 from Address 0 host, that is 0.07mA, 0,05mA, 0.04mA, 0.03mA, 0.02mA, 0.01mA, 0.20mA, 0.07mA, 0.50mA, 0.30mA.

[:SOURce]:SAFety[:CHANnel]<m>:RESult:ALL:MODE?

It queries the MODE of all STEPs when the Screen sets to On. The format of variable <m> at the end of [:CHANnel] is 3 digits. The first digit is Frame index in the range of 0~9 and the last two digits are Channel index in the range of 01~10 (19020/19021/19022) or 01~04(19020-4/19022-4). When the variable is ignored it is 001 to indicate Channel 1 of the Master. The returned string is AC|DC|IR|OSC|PA.

Example:Input the command SAF:CHAN005:RES:ALL:MODE?
The Tester returns OSC,AC,AC,PA,DC,DC,DC,DC,PA,IR,IR.Description:The returned string is the MODE setting of Address 0 host for CH5
STEP1~STEP10, that is OSC Mode, AC Mode, AC Mode, PA Mode,
DC Mode, DC Mode, DC Mode, DC Mode, PA Mode, IR Mode.

[:SOURce]:SAFety[:CHANnel]<m>:RESult:ALL:OMETerage?

It queries the readings of OUTPUT METER in all STEPs when the Screen sets to On. The format of variable <m> at the end of [:CHANnel] is 3 digits. The first digit is Frame index in the range of 0~9 and the last two digits are Channel index in the range of 01~10 (19020/19021/19022) or 01~04(19020-4/19022-4). When the variable is ignored it is 001 to indicate Channel 1 of the Master.

Example:	Input the command SAF:CHAN101:RES:ALL:OMET? The Tester returns 5.100000E+01, 5.000000E+02, 1.000000E+02, 2.000000E+02, 3.000000E+02, 4.000000E+02, 5.100000E+02, 6.000000E+02, 7.000000E+02, 8.000000E+02.
Description:	The returned string is the result queried for OUTPUT METER by CH1 STEP1~STEP10 from Address 1 host, that is 0.051kV, 0.500kV, 0.100kV, 0.200kV, 0.300kV, 0.400kV, 0.510kV, 0.600kV, 0.700kV, 0.800kV.

[:SOURce]:SAFety[:CHANnel]<m>:RESult:ALL:TIME[:ELAPsed]:DWELI?

It queries the DWELL time of all STEPs for test when the Screen sets to On. The format of variable <m> at the end of [:CHANnel] is 3 digits. The first digit is Frame index in the

range of 0~9 and the last two digits are Channel index in the range of 01~10 (19020/ 19021/19022) or 01~04 (19020-4/19022-4). When the variable is ignored it is 001 to indicate Channel 1 of the Master.

Example:	Input the command SAF:CHAN005:RES:ALL:TIME:DWEL? The Tester returns 5.000000E+00, 5.000000E+00, 5.000000E+00, 1.000000E+00, 1.0000000E+00, 1.000000E+00, 1.00000E+00, 1.000000E+00, 1.00000E+00, 1.000000E+00, 1.000000E+00, 1.000000E+00, 1.000000E+00, 1.000000E+00, 1.00000000E+00, 1.00000000E+0000000E+0000000000E+00000000
Description:	2.000000E+00, 2.000000E+00, 2.000000E+00. The returned string is the dwell time tested of Address 0 host for CH5
	STEP1~STEP10, that is 5.0sec, 5.0sec, 5.0sec, 1.0sec, 1.0sec, 1.0sec, 1.0sec, 2.0sec, 2.0sec, 2.0sec.

[:SOURce]:SAFety[:CHANnel]<m>:RESult:ALL:TIME[:ELAPsed]:FALL? It queries the time of voltage fall for all STEPs when the Screen sets to On. The format of variable <m> at the end of [:CHANnel] is 3 digits. The first digit is Frame index in the range of 0~9 and the last two digits are Channel index in the range of 01~10 (19020/ 19021/19022) or 01~04 (19020-4/19022-4). When the variable is ignored it is 001 to indicate Channel 1 of the Master.

 Example:
 Input the command SAF:CHAN005:RES:ALL:TIME:FALL? The Tester returns 1.500000E+00, 1.500000E+00, 1.500000E+00, 2.000000E+00, 2.000000E+00, 2.000000E+00, 5.000000E-01, 5.000000E-01, 5.000000E-01, 5.000000E-01.

 Description:
 The returned string is the voltage fall time tested of Address 0 host for CH5 STEP1~STEP10, that is 1.5sec, 1.5sec, 1.5sec, 2.0sec, 2.0sec, 2.0sec, 0.5sec, 0.5sec, 0.5sec.

[:SOURce]:SAFety[:CHANnel]<m>:RESult:ALL:TIME[:ELAPsed]:RAMP?

It queries the time required for voltage to ramp up of all STEPs when the Screen sets to On. The format of variable <m> at the end of [:CHANnel] is 3 digits. The first digit is Frame index in the range of 0~9 and the last two digits are Channel index in the range of 01~10 (19020/19021/19022) or 01~04 (19020-4/19022-4). When the variable is ignored it is 001 to indicate Channel 1 of the Master.

Example:	Input the command SAF:CHAN005:RES:ALL:TIME:RAMP? The Tester returns 5.000000E+00, 5.000000E+00, 5.000000E+00, 1.000000E+00, 1.000000E+00, 1.000000E+00, 2.000000E+00, 2.000000E+00, 2.000000E+00, 2.000000E+00
Description:	The returned string is the time required for voltage to ramp up to the set in CH5 STEP1~STEP10 on Address 0 host, that is 0.5sec, 0.5sec, 0.5sec, 1.0sec, 1.0sec, 1.0sec, 2.0sec, 2.0sec, 2.0sec, 2.0sec.

[:SOURce]:SAFety[:CHANnel]<m>:RESult:ALL:TIME[:ELAPsed] [:TEST]? It queries the test time of all STEPs when the Screen sets to On. The format of variable <m> at the end of [:CHANnel] is 3 digits. The first digit is Frame index in the range of 0~9 and the last two digits are Channel index in the range of 01~10 (19020/19021/ 19022) or 01~04 (19020-4/19022-4). When the variable is ignored it is 001 to indicate Channel 1 of the Master.

Example: Input the command SAF:CHAN005:RES:ALL:TIME? The Tester returns 3.000000E+00, 3.000000E+00, 1.000000E+00, 2.500000E+00, 1.000000E+00, 1.000000E+00, 0.500000E+00, 3.000000E+00, 1.000000E+00.Description:The returned string is the time required for testing for CH5
STEP1~STEP10 of Address 0 host, that is 3.0sec, 3.0sec, 1.0sec,
2.5sec, 2.5sec, 1.0sec, 1.0sec, 0.5sec, 3.0sec, 1.0sec.

[:SOURce]:SAFety[:CHANnel]<m>:RESult:AREPort < boolean > | ON | OFF

It sets if reporting the test result automatically (only valid for RS232 interface.) This command is only valid for this Tester, so the Address 0 host <m> can use 001, Address 1 host <m> can use 101 and so forth. The Address 9 host <m> can use 901. The returned data is Total Pass/Fail state and its format is string in "PASS" or "FAIL".

Example: Input the command SAF001:RES:AREP ON

Description: It means to set the Address 0 host to return the test result automatically after the test is done. If the test result of all channels of Address 0 host is PASS, it returns "PASS" or "FAIL" will be returned.

[:SOURce]:SAFety[:CHANnel]<m>:RESult:AREPort?

It queries the device if reporting the test result automatically. The return is 1 or 0. (Applicable for RS232 interface only.)

Example:	Input the command SAF001:RES:AREP?
	The Tester returns 1.
Description:	The returned 1 means Address 0 host will report the test result
	automatically once the test is done.

[:SOURce]:SAFety[:CHANnel]<m>:RESult:COMPleted?

It queries the device if all settings are executed completely. The return is 1 or 0.

Example:	Input the command SAF001:RES:COMP?
	The Tester returns 1.
Description:	The returned 1 means Address 0 host has completed the execution of all settings.
	or all settings.

[:SOURce]:SAFety[:CHANnel]<m>:RESult:STEP<n>[:JUDGment]?

It queries the judgment of specified STEP when the Screen sets to On. The format of variable <m> at the end of [:CHANnel] is 3 digits. The first digit is Frame index in the range of 0~9 and the last two digits are Channel index in the range of 01~10 (19020/ 19021/19022) or 01~04(19020-4/19022-4). When the variable is ignored it is 001 to indicate Channel 1 of the Master. Return format: First Step Result, Second Step Result, ..., Last Step Result. The table below lists the definition of Code:

Mode	AC		DC		IR		OSC		ALL	
Code	HEX	DEC								
STOP									70	112
TESTING									73	115
PASS									74	116
HIGH FAIL	21	33	31	49	41	65				
LOW FAIL	22	34	32	50	42	66				
ARC FAIL	23	35	33	51						
OCP	24	36	34	52	44	68	64	100		
SHORT FAIL							61	97		
OPEN FAIL							62	98		

Code of Test Result

Example:	Input the command SAF:CHAN003:RES:STEP3?
	The Tester returns 116.
Description:	The returned result indicates the judgment of CH3 STEP 3 for
	Address 0 host is PASS.

[:SOURce]:SAFety[:CHANnel]<m>:RESult:STEP<n>:MMETerage?

It queries the MEASURE METER reading of specified STEP when the Screen sets to On. The format of variable <m> at the end of [:CHANnel] is 3 digits. The first digit is Frame index in the range of 0~9 and the last two digits are Channel index in the range of 01~10 (19020/19021/19022) or 01~04(19020-4/19022-4). When the variable is ignored it is 001 to indicate Channel 1 of the Master.

Example:	Input the command SAF:CHAN004:RES:STEP3:MMET?
	The Tester returns 4.000000E-05.
Description:	The returned result indicates the MEASURE METER reading of CH4 STEP 3 for Address 0 host is 0.04mA.

[:SOURce]:SAFety[:CHANnel]<m>:RESult:STEP<n>:OMETerage?

It queries the OUTPUT METER reading of specified STEP when the Screen sets to On. The format of variable <m> at the end of [:CHANnel] is 3 digits. The first digit is Frame index in the range of 0~9 and the last two digits are Channel index in the range of 01~10 (19020/19021/19022) or 01~04(19020-4/19022-4). When the variable is ignored it is 001 to indicate Channel 1 of the Master.

Example:	Input the command SAF:CHAN001:RES:STEP3:OMET? The Tester returns 1.000000E+02.
Description:	The returned result indicates the OUTPUT METER reading of CH1 STEP 3 for Address 0 host is 0.100kV.

[:SOURce]:SAFety[:CHANnel]<m>:RESult:STEP<n>:TIME[:ELAPsed]: DWELI? It queries the DWELL time tested by specified STEP when the Screen sets to On. The format of variable <m> at the end of [:CHANnel] is 3 digits. The first digit is Frame index in the range of 0~9 and the last two digits are Channel index in the range of 01~10 (19020/19021/19022) or 01~04(19020-4/19022-4). When the variable is ignored it is 001 to indicate Channel 1 of the Master.

Example:	Input the command SAF:CHAN005:RES:STEP1:TIME:DWEL?
	The Tester returns 5.000000E-01
Description:	The returned result indicates the DWELL tested by CH5 STEP 1 for
	Address 0 host is 0.5sec.

[:SOURce]:SAFety[:CHANnel]<m>:RESult:STEP<n>:TIME[:ELAPsed]: FALL? It queries the time of voltage fall in specified STEP when the Screen sets to On. The format of variable <m> at the end of [:CHANnel] is 3 digits. The first digit is Frame index in the range of 0~9 and the last two digits are Channel index in the range of 01~10 (19020/19021/19022) or 01~04(19020-4/19022-4). When the variable is ignored it is 001 to indicate Channel 1 of the Master.

Example:	Input the command SAF:CHAN005:RES:STEP4:TIME:FALL?
	The Tester returns 2.000000E+00.
Description:	The returned result indicates the time of voltage fall in CH5 STEP 4 for Address 0 host is 2.0sec.

[:SOURce]:SAFety[:CHANnel]<m>:RESult:STEP<n>:TIME[:ELAPsed]: RAMP?

It queries the time of voltage ramp in specified STEP when the Screen sets to On. The format of variable <m> at the end of [:CHANnel] is 3 digits. The first digit is Frame index in the range of 0~9 and the last two digits are Channel index in the range of 01~10 (19020/19021/19022) or 01~04(19020-4/19022-4). When the variable is ignored it is 001 to indicate Channel 1 of the Master.

Example:	Input the command SAF:CHAN005:RES:STEP1:TIME:RAMP? The Tester returns 5.000000E-01.
Description:	The returned result indicates the time of voltage ramp in CH5 STEP 1 for Address 0 host is 0.5sec.

[:SOURce]:SAFety[:CHANnel]<m>:RESult:STEP<n>:TIME[:ELAPsed] [:TEST]?

It queries the test time of specified STEP when the Screen sets to On. The format of variable <m> at the end of [:CHANnel] is 3 digits. The first digit is Frame index in the range of 0~9 and the last two digits are Channel index in the range of 01~10 (19020/19021/19022) or 01~04(19020-4/19022-4). When the variable is ignored it is 001 to indicate Channel 1 of the Master.

Example: Input the command SAF:CHAN005:RES:STEP2:TIME? The Tester returns 3.000000E+00. Description: The returned result indicates the test time required in CH5 STEP 2 for Address 0 host is 3.0sec.

[:SOURce]:SAFety:FRAMe<f>:RESult:STEP<n>[:JUDGment]?

It queries the judgment of specified STEP for all channels of a Frame when the Screen sets to On. The range of variable <f> at the end of FRAMe<f> command is 0~9 that indicates the Frame address. When <f> is ignored the default is 1 it indicates to query the judgment results of all channels for Slave 1. Return format: Ch1 Result, Ch2 Result, ..., Ch10 Result. The table below lists the definition of Code:

Code of Test Result

Mode	A	С	D	С	l	R	Ő	SC	A	L
Code	HEX	DEC								
STOP									70	112
TESTING									73	115
PASS									74	116
HIGH FAIL	21	33	31	49	41	65				
LOW FAIL	22	34	32	50	42	66				
ARC FAIL	23	35	33	51						
OCP	24	36	34	52	44	68	64	100		
SHORT FAIL							61	97		
OPEN FAIL							62	98		

Example: Input the command SAF:FRAM0:RES:STEP3?

[:SOURce]:SAFety:FRAMe<f>:RESult:STEP<n>:MMETerage?

It queries the MEASURE METER readings of specified STEP for all channels of a Frame when the Screen sets to On. The range of variable <f> at the end of FRAMe<f>

command is 0~9 that indicates the Frame address. When <f> is ignored the default is 1 it indicates to query the MEASURE METER readings of all channels for Slave 1.

Example:	Input the command SAF:FRAME0:RES:STEP3:MMET?
	The Tester returns 7.000000E-05, 5.000000E-05, 4.000000E-05,
	3.000000E-05, 2.000000E-05, 1.000000E-05, 2.000000E-04,
	7.000000E-05, 5.000000E-04, 3.000000E-04.
Description:	The returned result indicates the queried MEASURE METER
	readings for all channels STEP3 of Address 0 host is 0.07mA,
	0,05mÅ, 0.04mA, 0.03mA, 0.02mA, 0.01mA, 0.20mA, 0.07mA,
	0.50mA, 0.30mA.

[:SOURce]:SAFety:FRAMe<f>:RESult:STEP<n>:OMETerage?

It queries the OUTPUT METER readings of specified STEP for all channels of a Frame when the Screen sets to On. The range of variable <f> at the end of FRAMe<f> command is 0~9 that indicates the Frame address. When <f> is ignored the default is 1 it indicates to query the OUTPUT METER readings of all channels for Slave 1.

Example:	Input the command SAF:FRAM1:RES:STEP3:OMET? The Tester returns 5.100000E+01, 5.000000E+01, 5.000000E+01, 5.200000E+01, 5.000000E+01, 4.900000E+01, 5.100000E+01, 4.900000E+01.
Description:	The returned result indicates the queried OUTPUT METER readings for all channels STEP3 of Address 1 host is 0.051kV, 0.050kV, 0.050kV, 0.050kV, 0.050kV, 0.050kV, 0.050kV, 0.049kV, 0.049kV, 0.050kV, 0.049kV.

[:SOURce]:SAFety:FRAMe<f>:RESult:STEP<n>:TIME[:ELAPsed]:DWELI?

It queries the DWELL time tested by specified STEP for all channels of a Frame when the Screen sets to On. The range of variable <f> at the end of FRAMe<f> command is 0~9 that indicates the Frame address. When <f> is ignored the default is 1 it indicates to query the DWELL time of all channels for Slave 1.

Example:	Input the command SAF:FRAM0:RES:STEP1:TIME:DWEL? The Tester returns 3.000000E+00, 3.000000E+00, 3.000000E+00,
	3.000000E+00, 3.000000E+00, 3.000000E+00, 3.000000E+00, 3.000000E+00, 3.000000E+00, 3.000000E+00, 3.000000E+00.
Description:	The returned result indicates the queried DWELL times tested by
F	STEP 1 for all channels of Address 0 host are 3sec, 3s

[:SOURce]:SAFety:FRAMe<f>:RESult:STEP<n>:TIME[:ELAPsed]:FALL? It queries the time voltage fall elapsed of a specified STEP for all channels of a Frame when the Screen sets to On. The range of variable <f> at the end of FRAMe<f> command is 0~9 that indicates the Frame address. When <f> is ignored the default is 1 it indicates to guery the time elapsed for voltage fall of all channels for Slave 1.

Example:	Input the command SAF:FRAM0:RES:STEP4:TIME:FALL? The Tester returns 3.000000E+00, 3.00000E+00, 3.000000E+00, 3.00000000E+00, 3.00000000E+00, 3.0000000000000000000000000000000000
Description:	3.000000E+00, 3.000000E+00, 3.000000E+00. The returned result indicates the tested voltage fall times of STEP 4 for all channels of Address 0 host are 3sec,

[:SOURce]:SAFety:FRAMe<f>:RESult:STEP<n>:TIME[:ELAPsed]:RAMP?

It queries the time voltage ramp elapsed of a specified STEP for all channels of a Frame when the Screen sets to On. The range of variable <f> at the end of FRAMe<f> command is 0~9 that indicates the Frame address. When <f> is ignored the default is 1 it indicates to query the time elapsed for voltage ramp of all channels for Slave 1.

Example:Input the command SAF:FRAM0:RES:STEP1:TIME:RAMP?
The Tester returns 3.00000E+00, 3.00000E+00, 3.00000E+00,
3.00000E+00, 3.00000E+00, 3.00000E+00,
3.00000E+00, 3.00000E+00.Description:The returned result indicates the time required for voltage to ramp up
to the set in STEP 1 for all channels of Address 0 host are 3sec,
3sec, 3sec, 3s

[:SOURce]:SAFety:FRAMe<f>:RESult:STEP<n>:TIME[:ELAPsed][:TEST]?

It queries the test time of a specified STEP for all channels of a Frame when the Screen sets to On. The range of variable <f> at the end of FRAMe<f> command is 0~9 that indicates the Frame address. When <f> is ignored the default is 1 it indicates to query the test time of all channels for Slave 1.

Example:	Input the command SAF:FRAM0:RES:STEP2:TIME?
	The Tester returns 3.000000E+00, 3.000000E+00, 3.000000E+00,
	3.000000E+00, 3.000000E+00, 3.000000E+00, 3.000000E+00,
	3.000000E+00, 3.000000E+00, 3.000000E+00.
Description:	The returned result indicates the test time required for STEP 2 of all
	channels for Address 0 host is 3sec, 3sec, 3sec, 3sec, 3sec, 3sec,
	3sec, 3sec, 3sec, 3sec.

[:SOURce]:SAFety:STARt[:ONCE]

It starts the test.

Example:	Input the command SAF:STAR
Description:	It means to start the host test.

[:SOURce]:SAFety:STARt:CORRection:OPEN GET / OFF

When the parameter is set to GET, it gets the correction value, the host may output high voltage. When the parameter is set to OFF, correction is disabled.

Example:	Input the command	SAF:STAR:CORR:OPEN GET
Description:	It means to start the	function of getting correction value.

[:SOURce]:SAFety:STARt:CORRection:OPEN?

It queries if correction has been done.

- Example: Input the command SAF:STAR:CORR:OPEN?
 - The Tester returns 0.
- Description: The returned 0 means the correction hasn't been done on the host.

[:SOURce]:SAFety:STARt:CORRection:SAMPle GET

It starts the GET Cs function in Open Short Check mode.

Example:	Input the command SAF:STAR:CORR:SAMP GET
Description:	It means to start the GET Cs function in Open Short Check mode.

[:SOURce]:SAFety:STARt:CORRection:SAMPle?

It queries if the GET Cs function is started in Open Short Check mode.

Example: Input the command SAF:STAR:CORR:SAMP ? The Tester returns 1 Description: The returned 1 means the GET Cs function has been started in Open Short Check mode.

[:SOURce]:SAFety:STATus?

It queries the execution status of present device. The string returned is RUNNING| STOPPED.

Example: Input the command SAF:STAT? The Tester returns RUNNING. Description: The returned RUNNING means the host is conduction tests at present.

[:SOURce]:SAFety:STEP<n>:AC:CHANnel[:CLOSe] <channel_list>

It sets the status of high voltage output channel in selected STEP.

Example: Input the command SAF:STEP1:AC:CHAN (@001,002,201:210) Description: It means to start the high voltage output channel CH1, CH2 in STEP 1 for Address 0 host, also start the high voltage output channel CH1~CH10 of Address 2 host.

[:SOURce]:SAFety:STEP<n>:AC:CHANnel[:CLOSe]?

It queries the status of high voltage output channel for selected STEP.

Example: Input the command SAF:STEP1:AC:CHAN? The Tester returns (@001,002,201:210). Description: The returned result indicates the high voltage output channels CH1 and CH2 of Address 0 host and the channels CH1~CH10 of Address 2 host in STEP 1 are started.

[:SOURce]:SAFety:STEP<n>:AC:CHANnel:DEFault:ON

It sets the selected STEP to use the option of DEF. CHANNELS in TEST CONTROL for setting high voltage output channel.

Example:Input the command SAF:STEP1:AC:CHAN:DEF:ONDescription:It means to set STEP 1 using the option of DEF. CHANNELS in
TEST CONTROL for setting high voltage output channel.

[:SOURce]:SAFety:STEP<n>:AC:CHANnel:DEFault:STATe?

It queries if the selected STEP is using the option of DEF. CHANNELS in TEST CONTROL for setting high voltage output channel.

Example: Input the command SAF:STEP1:AC:CHAN:DEF:STAT? The Tester returns 1. Description: The returned 1 means STEP 1 is using the option of DEF. CHANNELS in TEST CONTROL for setting high voltage output channel. [:SOURce]:SAFety:STEP<n>:AC:CHANnel:PSC P | S | PS, S | C | SC

It sets the scan channel status for selected STEP.

Example: Input the command SAF:STEP1:AC:CHAN:PSC P,S Description: It means to set the scan channel of STEP 1 to $P \rightarrow S$.

[:SOURce]:SAFety:STEP<n>:AC:CHANnel:PSC?

It queries the scan channel status for selected STEP.

Example: Input the command SAF:STEP1:AC:CHAN:PSC? The Tester returns P,S. Description: It means the scan channel of STEP 1 is set to $P \rightarrow S$.

[:SOURce]:SAFety:STEP<n>:AC[:LEVel] < numeric value >

It sets the voltage required for AC withstand voltage test for selected STEP. The unit is Volt (V).

Range:	The range of 19020 is 50~5000 and the range of 19021 is 50~6000.
Example:	Input the command SAF:STEP1:AC 3000.
Description:	It means to set the voltage required by AC withstand voltage test for the host STEP 1 is 3kV.

[:SOURce]:SAFety:STEP<n>:AC[:LEVel]?

It queries the voltage required for AC withstand voltage test for selected STEP.

Input the command SAF:STEP1:AC?	
The Tester returns 3.000000E+03.	
The returned 3.000000E+03 means the voltage required by AC	
withstand voltage test for the host STEP 1 is 3kV.	
[:SOURce]:SAFety:STEP <n>:AC:LIMit:ARC < numeric value ></n>	
•	

It sets the ARC test value for selected STEP. The unit is Ampere (A).

Range:	0 or 0.001~0.020, 0 is OFF.
Example:	Input the command SAF:STEP1:AC:LIM:ARC 0.004.
Description:	It means the ARC test value in AC Mode for the host STEP 1 is 4mA.

[:SOURce]:SAFety:STEP<n>:AC:LIMit:ARC?

It queries the ARC test value for selected STEP.

Example: Input the command SAF:STEP1:AC:LIM:ARC? The Tester returns 4.000000E-03. Description: The returned 4.000000E-03 means the ARC test value for the host STEP 1 is 4mA.

[:SOURce]:SAFety:STEP<n>:AC:LIMit[:HIGH] < numeric value >

It sets the high limit of AC withstand leakage current for selected STEP. The unit is Ampere (A).

Range:	The range of 19020 is 0.000001~0.01 and the range of 19021 is
	0.000001~0.008.
Example:	Input the command SAF:STEP1:AC:LIM 0.01.
Description:	It means the high limit of AC withstand leakage current for the host
	STEP 1 is 10mA.

[:SOURce]:SAFEty:STEP<n>:AC:LIMit[:HIGH]?

It queries the high limit of AC withstand leakage current for selected STEP.

Example:	Input the command SAF:STEP1:AC:LIM?
	The Tester returns 1.000000E-02.
Description:	The returned 1.000000E-02 means the high limit of AC withstand
	leakage current for the host STEP 1 is 10mA.

[:SOURce]:SAFety:STEP<n>:AC:LIMit:LOW < numeric value >

It sets the low limit of AC withstand leakage current for selected STEP. The unit is Ampere (A).

Range:	The range of 19020 is 0.000001~0.01 and the 19021 range is
	0.000001~0.008 (the low limit of leakage current \leq the set high limit.)
Example:	Input the command SAF:STEP1:AC:LIM:LOW 0.00001.
Description:	It means the low limit of AC withstand leakage current for the host
	STEP 1 is 0.01mA.

[:SOURce]:SAFety:STEP<n>:AC:LIMit:LOW?

It queries the low limit of AC withstand leakage current for selected STEP.

Example:	Input the command SAF:STEP2:AC:LIM:LOW?
	The Tester returns 1.000000E-05.
Description:	The returned 1.000000E-05 means the low limit of AC withstand
	leakage current for the host STEP 2 is 0.01mA.

[:SOURce]:SAFety:STEP<n>:AC:TIME:FALL < numeric value >

It sets the time required for the voltage to fall to 0 in selected STEP. The unit is second (s).

Range:	0 or 0.1~999.9, 0 is OFF.
Example:	Input the command SAF:STEP1:AC:TIME:FALL 3
Description:	It means the time required for set voltage to fall to 0 in the host STEP
	1 is 3.0sec.

[:SOURce]:SAFEty:STEP<n>:AC:TIME:FALL?

It queries the time required for the voltage to fall to 0 in selected STEP.

Example:	Input the command SAF:STEP1:AC:TIME:FALL?
	The Tester returns 3.000000E+00.
Description:	The returned 3.000000E+00 means the time required for the set voltage to fall to 0 in the host STEP 1 is 3.0sec.

[:SOURce]:SAFety:STEP<n>:AC:TIME:RAMP < numeric value >

It sets the time required for the voltage to ramp up to the set for selected STEP. The unit second (s).

Range:	0 or 0.1~999.9, 0 is OFF.
Example:	Input the command SAF:STEP1:AC:TIME:RAMP 5.
Description:	It means the time required for testing the voltage to ramp up to set for
	the host STEP 1 is 5.0sec.

[:SOURce]:SAFety:STEP<n>:AC:TIME:RAMP?

It queries the time required for the voltage to ramp to the set for selected STEP.

Example:Input the command SAF:STEP1:AC:TIME:RAMP?
The Tester returns 5.000000E+00.Description:The returned 5.000000E+00 means the time required for the voltage
to ramp up to the set for the host STEP 1 is 5.0sec.

[:SOURce]:SAFety:STEP<n>:AC:TIME[:TEST] < numeric value >

It sets the time required for test for selected STEP. The unit is second (s).

Range:0 or 0.03~999.9, 0 is CONTINUE.Example:Input the command SAF:STEP1:AC:TIME 10.Description:It means the time required for test in host STEP 1 is 10.0sec.

[:SOURce]:SAFety:STEP<n>:AC:TIME[:TEST]?

It queries the time required for test for selected STEP.

Example: Input the command SAF:STEP1:AC:TIME? The Tester returns 1.000000E+01. Description: The returned 1.000000E+01 means the time required for test in the host STEP 1 is 10.0sec.

[:SOURce]:SAFety:STEP<n>:DC:CHANnel[:CLOSe] <channel_list>

It sets the high voltage output channel status of selected STEP.

Example:Input the command SAF:STEP2:DC:CHAN (@001,002,201:210).Description:It means the high voltage output channels CH1 & CH2 of Address 0
host in STEP 2 are enabled and the high voltage output channels
CH1~CH10 of Address 2 host are enabled as well.

[:SOURce]:SAFety:STEP<n>:DC:CHANnel[:CLOSe]?

It queries the high voltage output channel status of selected STEP.

Example: Input the command SAF:STEP2:DC:CHAN? The Tester returns (@001,002,201:210). Description: The returned result indicates the high voltage output channels CH1 & CH2 of Address 0 host in STEP 2 are enabled and the high voltage output channels CH1~CH10 of Address 2 host are enabled as well.

[:SOURce]:SAFety:STEP<n>:DC:CHANnel:DEFault:ON

It sets the high voltage channel settings in DEF. CHANNELS options under TEST CONTROL for selected STEP.

Example:Input the command SAF:STEP2:DC:CHAN:DEF:ONDescription:It means to set STEP 2 with high voltage channel settings in DEF.
CHANNELS options under TEST CONTROL.

[:SOURce]:SAFety:STEP<n>:DC:CHANnel:DEFault:STATe?

It queries the high voltage channel settings set by DEF. CHANNELS options in TEST CONTROL for selected STEP.

Example: Input the command SAF:STEP2:DC:CHAN:DEF:STAT? The Tester returns 1. Description: The returned 1 means STEP 2 is using the high voltage channel settings in DEF. CHANNELS options under TEST CONTROL.

[:SOURce]:SAFety:STEP<n>:DC:CHANnel:PSC P / S / PS, S / C / SC

It sets the scan channel status for selected STEP.

Example: Input the command SAF:STEP1:DC:CHAN:PSC P,S Description: It means to set the scan channel of STEP 1 to $P \rightarrow S$.

[:SOURce]:SAFety:STEP<n>:DC:CHANnel:PSC?

It queries the scan channel status for selected STEP.

Example: Input the command SAF:STEP1:DC:CHAN:PSC? The Tester returns P,S. Description: It means the scan channel of STEP 1 is set to $P \rightarrow S$.

[:SOURce]:SAFety:STEP<n>:DC[:LEVel] < numeric value >

It sets the voltage required for DC withstand voltage test for selected STEP. The unit is Volt (V).

Range:	50~6000 for 19020, 50~8000 for 19022.
Example:	Input the command SAF:STEP2:DC 4000.
Description:	It means the voltage set for the DC withstand voltage test for the host STEP 2 is 4kV.

[:SOURce]:SAFety:STEP<n>:DC[:LEVel]?

It queries the voltage required for DC withstand voltage test for selected STEP

Example:	Input the command SAF:STEP2:DC?
	The Tester returns 4.000000E+03.
Description:	The returned 4.000000E+03 means the voltage required for DC withstand voltage test for STEP 2 is 4kV.

[:SOURce]:SAFety:STEP<n>:DC:LIMit:ARC < numeric value >

It sets the ARC test value for selected STEP. The unit is Ampere (A).

Range:	0 or 0.001~0.010, 0 is OFF.
Example:	Input the command SAF:STEP2:DC:LIM:ARC 0.0025.
Description:	It means the ACR test value is set to 2.5mA for the host STEP 2.

[:SOURce]:SAFEty:STEP<n>:DC:LIMit:ARC?

It queries the ARC test value for selected STEP.

Example: Input the command SAF:STEP2:DC:LIM:ARC? The Tester returns 2.500000E-03. Description: The returned 2.500000E-03 means the ARC test value is set to 2.5mA for the host STEP 2.

[:SOURce:]SAFety:STEP<n>:DC:LIMit[:HIGH] < numeric value >

It sets the high limit of DC withstand voltage leakage current for selected STEP. The unit is Ampere (A).

Range: 0.000001~0.005 for 19020, 0.000001~0.0035 for 19022.

Example:	Input the command SAFE:STEP2:DC:LIM 0.002999.
Description:	It means the high limit of DC withstand voltage leakage current is set
	to 2.999mA for the host STEP 2.

[:SOURce:]SAFety:STEP<n>:DC:LIMit[:HIGH]?

It queries the high limit of DC withstand voltage leakage current for selected STEP.

Example:	Input the command SAFE:STEP2:DC:LIM?
	The Tester returns 2.999000E-03.
Description:	The returned 2.999000E-03 means the high limit of DC withstand
	voltage leakage current is set to 2.999mA for the host STEP 2.

[:SOURce:]SAFety:STEP<n>:DC:LIMit:LOW < numeric value >

It sets the low limit of DC withstand voltage leakage current for select STEP. The unit is Ampere (A).

Range:	0.000001~0.005 for 19020, 0.000001~0.0035 for 19022.
	(Low limit of leakage current ≤ set high limit.)
Example:	Input the command SAF:STEP2:DC:LIM:LOW 0.000001.
Description:	It means the low limit of DC withstand voltage leakage current is set
	to 0.001mA for the host STEP 2.

[:SOURce:]SAFety:STEP<n>:DC:LIMit:LOW?

It queries the low limit of DC withstand voltage leakage current for selected STEP.

Example:	Input the command SAF:STEP2:DC:LIM:LOW?
	The Tester returns 1.000000E-06.
Description:	The returned 1.000000E-06 means the low limit of DC withstand voltage leakage current is set to 0.001mA for the host STEP 2.

[:SOURce]:SAFety:STEP<n>:DC:TIME:DWELI < numeric value >

It sets the time required for DWELL for selected STEP. The unit is second (s).

Range:	0 or 0.1~999.9, 0 is OFF.
Example:	Input the command SAF:STEP2:DC:TIME:DWEL 2.5.
Description:	It means the time required for DWELL for the host STEP 2 is 2.5sec.

[:SOURce]:SAFety:STEP<n>:DC:TIME:DWELI?

It queries the time required for DWELL for selected STEP.

Example:	Input the command SAFE:STEP2:DC:TIME:DWEL?
	The Tester returns 2.500000E+00.
Description:	The returned 2.500000E+00 means the DWELL time is set to 2.5sec
	for the host STEP2.

[:SOURce]:SAFety:STEP<n>:DC:TIME:FALL < numeric value >

It sets the time required for set voltage to fall to 0 for selected STEP. The unit is second (s).

Range:	0 or 0.1~999.9, 0 is OFF.
Example:	Input the command SAF:STEP2:DC:TIME:FALL 3.
Description:	It means the time required for set voltage to fall to 0 for selected
	STEP is 3.0sec.

[:SOURce]:SAFety:STEP<n>:DC:TIME:FALL?

It queries the time required for set voltage to fall to 0 for selected STEP.

Example: Input the command SAF:STEP2:DC:TIME:FALL? The Tester returns 3.000000E+00. Description: The returned 3.000000E+00 means the time required for set voltage to fall to 0 for the host STEP 2 is 3.0sec.

[:SOURce]:SAFety:STEP<n>:DC:TIME:RAMP < numeric value >

It sets the time required for selected STEP to ramp up to the set voltage. The unit is second (s).

Range:	0 or 0.1~999.9, 0 is OFF.
Example:	Input the command SAF:STEP2:DC:TIME:RAMP 2.
Description:	It means the time required for the host STEP 2 to ramp up to the set
	voltage is 2.0sec.

[:SOURce]:SAFety:STEP<n>:DC:TIME:RAMP?

It queries the time required for selected STEP to ramp up to the set voltage.

Example:	Input the command SAF:STEP3:DC:TIME:RAMP?
	The Tester returns 2.000000E+00.
Description:	The returned 2.000000E+00 means the time required for selected
	STEP 2 to ramp up to the set voltage is 2.0sec.

[:SOURce]:SAFety:STEP<n>:DC:TIME[:TEST] < numeric value >

It sets the time required for test for selected STEP. The unit is second (s).

Example:	Input the command SAF:STEP2:DC:TIME 1.
Range:	0 or 0.1~999.9, 0 is CONTINUE.
Description:	It means the time required for test for the host STEP 2 is 1.0sec.

[:SOURce]:SAFety:STEP<n>:DC:TIME[:TEST]?

It queries the time required for test for selected STEP.

Example:	Input the command SAFE:STEP2:DC:TIME?
	The Tester returns 1.000000E+00.
Description:	The returned 1.000000E+00 means the time required for STEP 2
	test is 1.0sec.

[:SOURce]:SAFety:STEP<n>:DELete

It removes the STEP of <n> and the subsequent STEP moves forward.

Example:	Input the command SAF:STEP1:DEL.
Description:	It means to clear the settings of STEP in the working memory.

[:SOURce]:SAFety:STEP<n>:IR:CHANnel[:CLOSe] <channel_list>

It sets the high voltage output channel status for selected STEP.

Example: Input the command SAF:STEP3:IR:CHAN (@001,002,201:210). Description: It means the high voltage output channels CH1 & CH2 of Address 0 host in STEP 3 are enabled and the high voltage output channels CH1~CH10 of Address 2 host are enabled as well.

[:SOURce]:SAFety:STEP<n>:IR:CHANnel[:CLOSe]?

It queries the high voltage output channel status of selected STEP.

Example:	Input the command SAF:STEP3:IR:CHAN?
	The Tester returns (@001,002,201:210).
Description:	The returned result means the high voltage output channels CH1 & CH2 of Address 0 host in STEP 3 are enabled and the high voltage output channels CH1~CH10 of Address 2 host are enabled as well.

[:SOURce]:SAFety:STEP<n>:IR:CHANnel:DEFault:ON

It sets the high voltage output channel using the options in DEF. CHANNELS under TEST CONTROL for selected STEP.

Example:Input the command SAF:STEP3:IR:CHAN:DEF:ON.Description:It means the high voltage output channel is set using the options in
DEF. CHANNELS under TEST CONTROL for STEP 3.

[:SOURce]:SAFety:STEP<n>:IR:CHANnel:DEFault:STATe?

It queries if the high voltage output channel uses the options in DEF. CHANNELS under TEST CONTROL for selected STEP.

Example: Input the command SAF:STEP3:IR:CHAN:DEF:STAT? The Tester returns 1. Description: The returned 1 means the high voltage output channel are set using the options in DEF. CHANNELS under TEST CONTROL for STEP 3.

[:SOURce]:SAFety:STEP<n>:IR:CHANnel:PSC *P* / *S* / *PS, S* / *C* / *SC* It sets the scan channel status for selected STEP.

Example:	Input the command SAF:STEP1:IR:CHAN:PSC P,S
Description:	It means to set the scan channel of STEP 1 to $P \rightarrow S$.

[:SOURce]:SAFety:STEP<n>:IR:CHANnel:PSC?

It queries the scan channel status for selected STEP.

Example:	Input the command SAF:STEP1:IR:CHAN:PSC?
-	The Tester returns P,S.
Description:	It means the scan channel of STEP 1 is set to $P \rightarrow S$.

[:SOURce]:SAFety:STEP<n>:IR[:LEVel] < numeric value >

It sets the voltage required for insulation resistance test for selected STEP. The unit is Volt (V).

Range:	50~1000
Example:	Input the command SAF:STEP3:IR 1000.
Description:	It means the voltage required for insulation resistance test for the host STEP3 is 1kV.

[:SOURce]:SAFety:STEP<n>:IR[:LEVel]?

It queries the voltage required for insulation resistance test for selected STEP.

Example: Input the command SAFE:STEP3:IR? The Tester returns 1.000000E+03. Description: The returned 1.000000E+03 means the voltage required for insulation resistance test for the host STEP 3 is set to 1kV.

[:SOURce]:SAFety:STEP<n>:IR:LIMit:HIGH < numeric value >

It sets the high limit of insulation resistance for selected STEP. The unit is ohm.

Range:	100000~5000000000
Example:	Input the command SAF:STEP3:IR:LIM:HIGH 500000000000.
Description:	It means the high limit of insulation resistance for the host STEP 3 is
	50GΩ.

[:SOURce]:SAFety:STEP<n>:IR:LIMit:HIGH?

It queries the high limit of insulation resistance for selected STEP.

Example:	Input the command SAF:STEP3:IR:LIM:HIGH?
	The Tester returns 5.000000E+10
Description:	The returned 5.000000E+10 queries the high limit of insulation
	resistance for selected STEP. $50G\Omega$.

[:SOURce]:SAFety:STEP<n>:IR:LIMit[:LOW] < numeric value >

It sets the low limit of insulation resistance for selected STEP. The unit is ohm.

Range:	100000~50000000000 (low limit of insulation resistance ≤ set high
	limit.)
Example:	Input the command SAFE:STEP3:IR:LIM 100000.
Description:	It means the low limit of insulation resistance for the host STEP 3 is
	0.1ΜΩ.

[:SOURce]:SAFety:STEP<n>:IR:LIMit[:LOW]?

It queries the low limit of insulation resistance for selected STEP.

Example:	Input the command SAFE:STEP3:IR:LIM?
	The Tester returns 1.000000E+05.
Description:	The returned 1.000000E+05 queries the high limit of insulation
	resistance for selected STEP. $0.1M\Omega$.

[:SOURce]:SAFety:STEP<n>:IR:RANGe:UPPer < numeric value >

It selects the upper current range for measurement based on the inputted current. The unit is Ampere (A).

Example:	Input the command SAF:STEP3:IR:RANG 0.0003.
Range:	0.00000001~0.005 for 19020, 0.000000001~0.0035 for 19022.
Description:	It means the current for IR measurement in the host STEP 3 is
	300uA, so the upper current range selected for IR measurement is
	3mA.

[:SOURce]:SAFety:STEP<n>:IR:RANGe:UPPer?

It queries the upper range set.

Example:	Input the command SAF:STEP3:IR:RANG?
	The Tester returns 3.000000E-03.
Description:	The returned 3.000000E-03 means the range set for the host STEP 3 is 3mA.

[:SOURce]:SAFety:STEP<n>:IR:RANGe[:LOWer] < numeric value >

It selects the lower current range for measurement based on the inputted current. The unit is Ampere (A).

Range:0.00000001~0.005 for 19020, 0.00000001~0.0035 for 19022.Example:Input the command SAF:STEP3:IR:RANG:LOW 0.0003Description:It means the current for IR measurement in the host STEP 3 is
300uA, so the lower current range selected for IR measurement is
300uA.

[:SOURce]:SAFety:STEP<n>:IR:RANGe[:LOWer]?

It queries the lower range set.

Example:	Input the command SAF:STEP3:IR:RANG:LOW?
	The Tester returns 3.000000E-04.
Description:	The returned 3.000000E-04 means the range set for the host STEP 3 is 300uA.

[:SOURce]:SAFety:STEP<n>:IR:RANGe: AUTO < boolean > | ON | OFF

It sets if IR range switches to AUTO. Parameter ON or 1 means AUTO while OFF or 0 means AUTO is disabled.

Note: When AUTO is not set, giving the parameter OFF will remain the original set range. When AUTO is set, giving the parameter OFF will set the range to 5mA.

Example:	Input the command SAF:STEP3:IR:RANG:AUTO ON.
Description:	It means the current range for the host STEP 3 IR measurement is
	AUTO.

[:SOURce]:SAFety:STEP<n>:IR:RANGe:AUTO?

It queries if IR range switches to AUTO. 1 means it is set to AUTO while 0 means AUTO is disabled.

Example:	Input the command SAF:STEP3:IR:AUTO?
	The Tester returns 1.
Description:	The returned 1 means the range is set to AUTO for the host STEP 3.

[:SOURce]:SAFety:STEP<n>:IR:TIME:FALL < numeric value >

It sets the time required for set voltage to fall to 0 for selected STEP. The unit is second (s).

Range:	0 or 0.1~999.9, 0 is OFF.
Example:	Input the command SAF:STEP3:IR:TIME:FALL 3.
Description:	It means the time required for set voltage to fall to 0 for the host STEP 3 is 3.0sec.

[:SOURce]:SAFety:STEP<n>:IR:TIME:FALL?

It queries the time required for set voltage to fall to 0 for selected STEP. The unit is second (s).

Example:	Input the command SAF:STEP3:IR:TIME:FALL?
	The Tester returns 3.000000E+00.
Description:	The returned 3.000000E+00 indicates the time required for set
	voltage to fall to 0 is 3.0sec.

[:SOURce]:SAFety:STEP<n>:IR:TIME:RAMP < numeric value >

It sets the time required for selected STEP to ramp up to the set voltage. The unit is second (s).

Range:	0 or 0.1~999.9, 0 is OFF.
Example:	Input the command SAF:STEP3:IR:TIME:RAMP 0.5.
Description:	It means the time required for the host STEP 3 to ramp up to the set voltage is 0.5sec.

[:SOURce]:SAFety:STEP<n>:IR:TIME:RAMP?

It queries the time required for selected STEP to ramp up to the set voltage.

Example: Input the command SAF:STEP3:IR:TIME:RAMP? The Tester returns 5.000000E-01. Description: The returned 5.000000E-01 means the time required for the host STEP 3 to ramp up to the set voltage is 0.5sec.

[:SOURce]:SAFety:STEP<n>:IR:TIME[:TEST] < numeric value >

It sets the time required for test for selected STEP. The unit is second (s).

Range:	0 or 0.3~999.9, 0 is CONTINUE.
Example:	Input the command SAFE:STEP3:IR:TIME 1.
Description:	It means the time required for test for the host STEP 3 is 1.0sec.

[:SOURce]:SAFety:STEP<n>:IR:TIME[:TEST]?

It queries the time required for test for selected STEP.

Example:	Input the command SAFE:STEP3:IR:TIME?
	The Tester returns 1.000000E+00.
Description:	The returned 1.000000E+00 means the time required for test in STEP 3 is 1sec.

[:SOURce]:SAFety:STEP<n>:OSC:CHANnel[:CLOSe] <channel_list>

It sets the high voltage output channel status for selected STEP.

Example: Input the command SAF:STEP4:OSC:CHAN (@001,002,201:210) Description: It means the high voltage output channels CH1 & CH2 of Address 0 host in STEP 4 are enabled and the high voltage output channels CH1~CH10 of Address 2 host are enabled as well.

[:SOURce]:SAFety:STEP<n>:OSC:CHANnel[:CLOSe]?

It queries the high voltage output channel status of selected STEP.

Example:Input the command SAF:STEP4:OSC:CHAN?
The Tester returns (@001,002,201:210).Description:The returned result means the high voltage output channels CH1 &
CH2 of Address 0 host in STEP 4 are enabled and the high voltage
output channels CH1~CH10 of Address 2 host are enabled as well.

[:SOURce]:SAFety:STEP<n>:OSC:CHANnel:DEFault:ON

It sets the high voltage output channel using the options in DEF. CHANNELS under TEST CONTROL for selected STEP.

Example: Input the command SAF:STEP4:OSC:CHAN:DEF:ON.

Description: It means the high voltage output channel is set using the options in DEF. CHANNELS under TEST CONTROL for STEP 4.

[:SOURce]:SAFety:STEP<n>:OSC:CHANnel:DEFault:STATe?

It queries if the high voltage output channel uses the options in DEF. CHANNELS under TEST CONTROL for selected STEP.

- Example:Input the command SAF:STEP4:OSC:CHAN:DEF:STAT?
The Tester returns 1.Description:The returned 1 means the high voltage output channel are set using
 - the options in DEF. CHANNELS under TEST CONTROL for STEP 4.

[:SOURce]:SAFety:STEP<n>:OSC:CHANnel:PSC P / S / PS, S / C / SC

It sets the scan channel status for selected STEP.

Example:	Input the command SAF:STEP1:OSC:CHAN:PSC P,S
Description:	It means to set the scan channel of STEP 1 to $P \rightarrow S$.

[:SOURce]:SAFety:STEP<n>:OSC:CHANnel:PSC?

It queries the scan channel status for selected STEP.

Example:	Input the command SAF:STEP1:OSC:CHAN:PSC?
	The Tester returns P,S.
Description:	It means the scan channel of STEP 1 is set to $P \rightarrow S$.

[:SOURce]:SAFety:STEP<n>:OSC:LIMit[:OPEN] < numeric value >

It sets the percentage of open check when doing OSC for selected STEP. The unit is 100%.

Range:	0.1~1.0
Example:	Input the command SAF:STEP4:OSC:LIM 0.3.
Description:	It means the percentage of open check when doing OSC for the host STEP 4 is 30%.

[:SOURce]:SAFety:STEP<n>:OSC:LIMit[:OPEN]?

It queries the percentage of open check when doing OSC for selected STEP.

Example:	Input the command SAF:STEP4:OSC:LIM?
	The Tester returns 3.000000E-01.
Description:	The returned 3.000000E-01 means the percentage of open check
	when doing OSC for the host STEP 4 is 30%.

[:SOURce]:SAFety:STEP<n>:OSC:LIMit: SHORt < numeric value >

It sets the percentage of short check when doing OSC for selected STEP. The unit is 100%.

Range:	0 or 1~5, 0 is OFF.
Example:	Input the command SAF:STEP4:OSC:LIM:SHOR 3.
Description:	It means the percentage of short check when doing OSC for the host STEP 4 is 300%.

[:SOURce]:SAFety:STEP<n>:OSC:LIMit: SHORt?

It queries the percentage of short check when doing OSC for selected STEP.

- Example: Input the command SAF:STEP4:OSC:LIM:SHOR? The Tester returns 3.000000E+00.
- Description: The returned 3.000000E+00 means the percentage of short check
 - when doing OSC for the host STEP 4 is 300%.

[: SOURce]:SAFety:STEP<n>:PAuse[:MESSage] <string data >

It sets the message prompt string for PAUSE mode.

Example: Input the command SAF:STEP5:PA "WAIT".

Description: It means the message string is WAIT for the host STEPS 5.

[: SOURce]:SAFety:STEP<n>:PAuse[:MESSage]?

It queries the message prompt string set.

Example:	Input the command SAF:STEP5:PA.
	The Tester returns "WAIT".
Description:	The returned "WAIT" means the message is "WAIT" for the host STEP 5.

[: SOURce]:SAFety:STEP<n>:PAuse:TIME[:TEST] < numeric_value>

It sets the time required for PA mode test for selected STEP.

Example: Input the command SAF:STEP5:PA:TIME 5. Description: It means the time required for test for the host STEP 5 is 5.0sec.

[: SOURce]:SAFety:STEP<n>:PAuse:TIME[:TEST]?

It queries the time required for PA mode for selected STEP.

Example:	Input the command SAF:STEP5:PA:TIME ?
	The Tester returns 5.000000E+00.
Description:	The returned 5.000000E+00 means the time required for test for the
	host STEP 5 is 5.0sec.

[:SOURce]:SAFety:STEP<n>:MODE?

It queries the MODE of selected STEP and returns the string data including AC, DC, IR, OSC or PA.

Example: Input the command SAF:STEP5:MODE? The Tester returns PA. Description: The returned PA means STEP 5 is in PA Mode.

[:SOURce]:SAFety:STEP<n>:SET?

It queries all of the settings of selected STEP.

 Example: Input the command SAF:STEP1:SET? The Tester returns 101,1, AC, +5.000000E+01, +5.000000E-04, +0.000000E+00, +0.000000E+00, +1.000000E+00, +3.000000E+00, +5.000000E-01, 1, (@001:010).
 Description: It means the STEP1 settings in the working memory of host is "Data format version 101, STEP1, AC Mode, VOLT:0.050kV, HIGH:0.500mA, LOW:OFF, ARC:OFF, RAMP:1.0s, TIME:3.0s, FALL:0.5s, CHANNELS:DEFAULT, Address 0 of CH1~CH10 is set to ON".

[:SOURce]:SAFety:STOP

It stops the test.

Example:	Input the command SAF:STOP
Description:	It means to stop the test on host.

:SYSTem:ERRor[:NEXT]?

It reads the message in Error Queue. See *6.6 Error Messages* for the error message returned.

Example:	Input the command SYST:ERR?
	The Tester returns 0, "No error".
Description:	The returned 0,"No error" means there is no message in the error queue.

:SYSTem:KLOCk < boolean > / ON / OFF (RS232 only) It controls the key to lock the panel from returning. The function is the same as the GPIB LLO command. However, it does not affect the Remote/Local state of GPIB.

Example:	Input the command SYST:KLOC ON.
Description:	It means the key is enabled to lock the panel from returning.

:SYSTem:KLOCk?

It queries if the panel has been locked.

Example:	Input the command SYST:KLOC?
	The Tester returns 1.
Description:	The returned 1 means the host panel is locked at present.

:SYSTem:LINK:ADDRess?

It queries the address set for the system connection.

Example:	Input the command SYST:LINK:ADDR?
	The Tester returns 1.
Description:	The returned 1 means the address of present system connection is 1.

:SYSTem:LINK:MASTer?

It queries if the system connection is set to Master.

Example:	Input the command SYSTem:LINK:MAST?
	The Tester returns 1.
Description:	The returned 1 means the present system connection is set to Master.

:SYSTem:LOCK:OWNer?

It queries the system is in LOCAL or REMOTE state.

Example:	Input the command SYSTem:LOCK:OWN?
	The Tester returns LOCal.
Description:	The returned LOCal means the system is in panel control state.

:SYSTem: LOCK:RELease

It switches back to the panel control state.

- Example: Input the command SYSTem:LOCK:REL.
- Description: It means to switch the system to panel control state.

:SYSTem:LOCK:REQuest?

It switches to remote control state. It returns 1 if success or 0 will be returned.

Example: Input the command SYSTem:LOCK:REQ? The Tester returns 1. Description: The returned 1 means it is successful to switch from local to remote state.

:SYSTem:TCONtrol:AGC[:SOFTware] < boolean > | ON | OFF

It sets if enable the software AGC function.

Example:	Input the command SYST:TCON:AGC ON.
Description:	It means the software AGC function is enabled.

:SYSTem:TCONtrol:AGC[:SOFTware]?

It queries if the software AGC function is enabled.

Example: Input the command SYST:TCON:AGC? The Tester returns 1. Description: The returned 1 means the software AGC function is enabled.

:SYSTem:TCONtrol:CHANnel[:DEFault][:CLOSe] <channel_list>

It sets the default of high voltage channel to close.

Example: Input the command SYST:TCON:CHAN (@001:003). Description: It means the default of high voltage channel is set to close for CH1~CH3 of host Address 0.

:SYSTem:TCONtrol:CHANnel[:DEFault][:CLOSe]?

It queries the default of high voltage channel to close.

Example: Input the command SYST:TCON:CHAN? The Tester returns (@001:003). Description: It means the default of host high voltage channel is set to close for CH1~CH3 Address 0.

:SYSTem:TCONtrol:DISCharge:VMINimum ON / OFF / <boolean>

It sets the total discharge function to ON or OFF.

Example:Input the command SYST:TCON:DISC:VMIN ONDescription:It means to turn on the total discharge function.

:SYSTem:TCONtrol:DISCharge:VMINimum?

It queries if the total discharge is turned on.

Example: Input the command SYST:TCON:DISC:VMIN? The Tester retuns 1. Description: It means the total discharge function is turned on.

:SYSTem:TCONtrol:EOT TIMer | TEST

It sets the EOT signal to be End Of Test or End Of Timer.

Example:	Input the command SYST:TCON:EOT TIM
Description:	It means to set the host in End Of Timer state.

:SYSTem:TCONtrol:EOT?

It queries the meaning of EOT.

Example: Input the command **SYST:TCON:EOT?** The Tester returns TIMer. Description: The returned TIMer means the host is in End Of Timer state.

:SYSTem:TCONtrol:FAIL:OPERation STOP / CONTinue

It sets if continue to test the next step when the present test is judged FAIL.

Example:	Input the command SYST:TCON:FAIL:OPER CONT.
Description:	It means the test continues when the present test is judged FAIL.

:SYSTem:TCONtrol:FAIL:OPERation?

It queries if continue to test the next step when the present test is judged FAIL.

Example: Input the command SYST:TCON:FAIL:OPER? The Tester returns CONTinue. Description: The returned CONTinue means to carry on next test step.

:SYSTem:TCONtrol:RJUDgment < boolean > / ON / OFF

It sets the RAMP JUDGMENT to be on or off.

Example:	Input the command SYST:TCON:RJUD ON.
Description:	It means the RAMP JUDGMENT is set to on.

:SYSTem:TCONtrol:RJUDgment?

It queries the RAMP JUDGMENT is on or off.

Example: Input the command SYST:TCON:RJUD? The Tester returns 1. Description: The returned 1 means the RAMP JUDGMENT is on.

:SYSTem:TCONtrol:SCReen < boolean > | ON | OFF

It sets if the SCREEN is on or off.

Example:Input the command SYST:TCON:SCR ON.Description:It means the SCREEN is set to on.

:SYSTem:TCONtrol:SCReen?

It queries if the SCREEN is on or off.

Example:Input the command SYST:TCON:SCR?The Tester returns 1.Description:The returned 1 means the SCREEN is set to on.

:SYSTem:TCONtrol:TIME:PASS[:HOLD] < number value >

It sets the action time for PASS HOLD. The unit is second (s).

Range:	0.2~99.9
Example:	Input the command SYST:TCON:TIME:PASS 0.5.
Description:	It means time set for PASS HOLD is 0.5sec.

:SYSTem:TCONtrol:TIME:PASS[:HOLD]?

It queries the action time for PASS HOLD.

Example:	Input the command SYST:TCON:TIME:PASS?	
	The Tester returns 5.000000E-01.	
Description:	The returned 5.000000E-01 means the time set for PASS HOLD is 0.5sec.	

:SYSTem:TCONtrol:VPERcent[:MINimum] < number value >

It sets the ratio of MIN. VOLTAGE. The unit is 100%.

Range:	0.0.5~0.95, 0 is OFF.
Example:	Input the command SYST:TCON:VPER 0.6.
Description:	It means the MIN. VOLTAG ratio is set to 60%.

:SYSTem:TCONtrol:VPERcent[:MINimum]?

It queries the ratio set for MIN. VOLTAGE.

Example:	Input the command SYST:TCON:VPER?
	The Tester returns 6.000000E-01.
Description:	The returned 6.000000E-01 means the ration set for MIN. VOLTAGE is 60%.

:SYSTem:TCONtrol:WRANge[:AUTO] < boolean > | ON | OFF

It sets the WV mode to enable or disable auto range function.

Example:Input the command SYST:TCON:WRAN ONDescription:It means the WV auto range function is enabled.

:SYSTem:TCONtrol:WRANge[:AUTO]?

It queries the WV mode if auto range is enabled.

Example:Input the command SYST:TCON:WRAN?Description:The returned 1 means auto range is enabled.

:SYSTem:TCONtrol:WVAC:FREQuency < number value > It sets the ACV FREQUENCY. The unit is Hz.

Range:	50/60
Example:	Input the command SYST:TCON:WVAC:FREQ 50.
Description:	It means the ACV FREQUENCY is set to 50Hz.

:SYSTem:TCONtrol:WVAC:FREQuency?

It queries the setting of ACV FREQUENCY.

Example: Input the command SYST:TCON:WVAC:FREQ? The Tester returns 5.000000E+01.

Description:	The returned 5.000000E+01 means the setting of ACV
	FREQUENCY is 50Hz

:SYSTem:VERSion?

It queries the supported SCPI version of this device.

Example:	Input the command SYST:VERS?
	The Tester returns 1990.0.
Description:	The returned 1990.0 means the SCPI version supported by this
	device is 1990.0.

6.6 Error Messages

- The error messages stored in error queue will be returned in the way of first in first out (FIFO) which means the first error message returned is the first one being saved.
- When error messages exceed 30, the last one be stored in the error queue will be –350 "Queue overflow". It means the error queue is unable to store another error message until the error messages are extracted.
- If no error is generated, +0 "No error" will be stored in the first position of error queue.

-101	Invalid character
400	There is invalid character in the command.
-102	Syntax error
-103	The syntax is error due to wrong character is used when piping the command. Invalid separator
-105	There is invalid separator in the command string.
-104	Data type error
-104	The parameter format is incorrect.
-108	Parameter not allowed
-100	The device receives unallowable parameter.
-109	Missing parameter
-105	The parameter is missing.
-111	Header separator error
	The command header separator is incorrect.
-112	Program mnemonic too long
	The simple command program header exceeds 12 characters.
-113	Undefined header
	The device receives undefined command header.
-114	Header suffix out of range
	The command header suffix variable is out of range.
-120	Numeric data error
	The numeric parameter is incorrect.
-141	Invalid character data
	The device receives invalid character data.
-151	Invalid string data
. – -	The device receives invalid string data usually the missing double quote.
-158	String data not allowed
	The device receives unallowable string parameter.
-168	Block data not allowed
474	The device receives unallowable block parameter.
-171	Invalid expression error
	The device receives invalid parameter of math expression.

-178	Expression data not allowed
	The device receives unallowable parameter of math expression.
-200	Execution error
	Error occurs when executing a command.
-203	Command protected
	The device does not accept the command.
-221	Settings conflict
	The command is conflict with the device at present and is unable to execute.
-222	Data out of range
	The parameter value exceeds the tolerance.
-241	Hardware missing
	The hardware does not exist.
-292	Referenced name does not exist
	The name specified does not exist.
-293	Referenced name already exist
	The name specified existed already.
-350	Queue overflow
	The error message is overflow.
-363	Input buffer overrun
	The device receives the characters more than the queue allowed.
-410	Query INTERRUPTED
	The query is interrupted due another query is received before the result of previous
	query has been read.
-420	Query UNTERMINATED
	When command is received to read the output queue data but there is none.

7. **Calibration Procedure**

Attention! Before performing the calibration procedure listed in this chapter, the Tester should be warm up for at least 30 minutes.

A/D REFERENCE Calibration (see Section 7.3)

A/D REFERENCE

; A/D Reference Calibration

Voltage Calibration (see Section 7.4)

19020/19020-4

ACV 5kV AGC OFFSET (0.1kV) ACV 5kV AGC FULL (4kV); AC Voltage AGC FULL pointACV 5kV 50Hz OFFSET (0.1kV); AC Voltage 50Hz OFFSET pointACV 5kV 50Hz FULL (4kV); AC Voltage 50Hz FULL pointACV 5kV 60Hz OFFSET (0.1kV); AC Voltage 60Hz OFFSET pointACV 5kV 60Hz FULL (4kV); AC Voltage 60Hz FULL pointDCV 6kV AGC OFFSET (0.1kV); DC Voltage AGC OFFSET pointDCV 6kV AGC FULL (4kV); DC Voltage AGC OFFSET pointDCV 6kV OFFST (0.1kV); DC Voltage AGC FULL pointDCV 6kV OFFST (0.1kV); DC Voltage OFFSET pointDCV 6kV FULL (4kV); DC Voltage OFFSET pointDCV 6kV FULL (4kV); DC Voltage OFFSET pointOSC 100V OFFST (50V); OSC Voltage OFFSET pointOSC 100V FULL (100V); OSC Voltage FULL point ACV 5kV AGC FULL (4kV)

19021

021ACV 6kV AGC OFFSET (0.1kV)ACV 6kV AGC FULL (4kV)ACV 6kV 50Hz OFFSET (0.1kV)ACV 6kV 50Hz FULL (4kV)ACV 6kV 60Hz FULL (4kV)ACV 6kV 60Hz OFFSET (0.1kV)ACV 6kV 60Hz FULL (4kV)ACV 0ltage 60Hz FULL pointCSC 100V OFFST (50V)ACV 0ltage FULL pointCSC Voltage FULL point

19022/19022-4

IO22/19022-4DCV 8kV AGC OFFSET (0.1kV)DCV 8kV AGC FULL (4kV)DCV 8kV OFFST (0.1kV)DCV 8kV OFFST (0.1kV)DCV 8kV FULL (7kV)OSC 100V OFFST (50V)OSC 100V FULL (100V)

Current Calibration (see Section 7.5)

19020/19020-4

ACA 3mA OFFSET (0.12mA); AC current 3mA range OFFSET pointACA 3mA FULL (2.4mA); AC current 3mA range FULL pointACA 10mA OFFSET (2.4mA); AC current 10mA range OFFSET pointACA 10mA FULL (4.8mA); AC current 10mA range FULL pointDCA 3mA OFFSET (0.12mA); DC 3mA range OFFSET pointDCA 3mA OFFSET (2.4mA); DC 3mA range OFFSET pointDCA 3mA OFFSET (2.4mA); DC 3mA range OFFSET pointDCA 5mA OFFSET (2.4mA); DC 5mA range OFFSET point

; AC Voltage AGC OFFSET point ; AC Voltage AGC FULL point

DCA 5mA FULL (4.8mA)

19021

ACA 3mA FULL (2.4mA); AC current 3mA range FULL pointACA 8mA OFFSET (2.4mA); AC current 8mA range OFFSET pointACA 8mA FULL (4.8mA); AC current 8mA range FULL point

19022/19022-4

DCA 3mA OFFSET (0.12mA); DC 3mA range OFFSET pointDCA 3mA FULL (2.4mA); DC 3mA range FULL pointDCA 3.5mA OFFSET (2.4mA); DC 3.5mA range OFFSET pointDCA 3.5mA FULL (4.8mA); DC 3.5mA range FULL point

; DC 5mA range FULL point

ACA 3mA OFFSET (0.12mA) ; AC current 3mA range OFFSET point

Insulation Resistance Calibration (see Section 7.6)

19020/19020-4/19022/19022-4

IRR 200M Ω OFFSET (4M Ω); IR Resistor 200M Ω OFFSET pointIRR 200M Ω FULL (20M Ω); IR Resistor 200M Ω FULL pointIRR 2G Ω OFFSET (40M Ω); IR Resistor 2G Ω OFFSET pointIRR 2G Ω FULL (200M Ω); IR Resistor 2G Ω OFFSET pointIRR 20G Ω OFFSET (400M Ω); IR Resistor 20G Ω OFFSET pointIRR 20G Ω OFFSET (400M Ω); IR Resistor 20G Ω OFFSET pointIRR 20G Ω OFFSET (400M Ω); IR Resistor 20G Ω OFFSET pointIRR 200G Ω FULL (2G Ω); IR Resistor 200G Ω OFFSET pointIRR 200G Ω OFFSET (4G Ω); IR Resistor 200G Ω OFFSET pointIRR 550G Ω OFFSET (40G Ω); IR Resistor 550G Ω OFFSET pointIRR 550G Ω FULL (200G Ω); IR Resistor 550G Ω FULL point

Note 19021 has no IRR related calibration.

ARC Calibration (see Section 7.7)

19020/19020-4

AC ARC 15mA (7mA)	; AC ARCing Calibration
DC ARC 5mA (3mA)	; DC ARCing Calibration
19021 AC ARC 15mA (7mA)	; AC ARCing Calibration

19022/19022-4

DC ARC 5mA (3mA)

; DC ARCing Calibration

7.1 Entering Calibration Screen

When in SYSTEM screen, move the highlight to CALIBRATION and press **ENTER** to go to CALIBRATION setting screen as shown below:

CHANGE PASSWORD	
CAL. PASSWORD∶■	
	EXIT
	REMOTE LOCK CORR ERROR

Key-in the calibration password **7 9 3 1** to enter into the calibration mode.

7.2 Selecting the Channel for Calibration

Ħ	1	CALIBRATION				Use char
shows		A/D REFERENCE		NEXT CH	┫	thes
the	+	CHANNEL: 1		PREV CH		two
channel under calibration		VOLTAGE 1.500V	CURRENT 1.500V REMOTE LOCK	CORR		functions keys to select calibrated.
-	'				1	the

As the figure shown above, use Function Key [NEXT CH] and [PREV CH] to select the channel to be calibrated and the screen will show the channel under calibration.

7.3 A/D REFERENCE Calibration

■ To calibrate the HV OUTPUT and RTN/LOW terminals of a CH, conduct the following calibration procedure without any DUT or cables connected.

A/D REFERENCE Calibration Screen:

CALIBRATION		
A/D REFERENCE		NEXT CH
CHANNEL: 1		PREV CH
CHANNEL: I		
VOLTAGE 1.500V	CURRENT 1.500V	
	REMOTE LOCK C	CORR ERROR

- 1. Press **START** to do A/D REFERENCE.
- 2. A/D REFERENCE calibration is done when the status indicator shows PASS.
- 3. Press ▼ to go to ACV 5kV AGC OFFSET (0.1kV) calibration.

7.4 Voltage Calibration

7.4.1 ACV Calibration

Connect an ACV high voltage meter to the Tester with high voltage terminal connected to HV OUTPUT and low voltage terminal connected to RTN/LOW of the channel to be calibrated.

ACV 5kV OFFSET (0.1kV) Calibration Screen:

CALIBRATION				
ACV 5kV AGC OFFSET	(0.1kV)		NEXT	СН
CHANNEL: 1			PREV	И СН
OUTPUT READ	ING			
0.100kV 0.10)1kV			
STANDARD 0.102kV				
DEF=0.1kV	REMOTE	LOCK	CORR	ERROR
DEF-O.IKV	KEMOIE	TOCK	CORR	LKKOK

- 1. Press **START** to output voltage and read the data from the high voltage meter.
- 2. Press numeric key **0** . ~ **9** to input the reading of high voltage meter.
- 3. Press **ENTER** to confirm the input.
- 4. Press **STOP** to stop high voltage output.
- 5. Press to go to ACV 5kV AGC FULL (4kV) calibration.

ACV 5kV AGC FULL (4kV) Calibration Screen:

CALIBRATION		
ACV 5kV AGC FU	LL (4kV)	NEXT CH
CHANNEL: 1		PREV CH
OUTPUT 4.000kV	READING 3.991kV	
STANDARD 3.977kV		
DEF=4kV	REMOTE LOCK	CORR ERROR

- 1. Press **START** to output voltage and read the data from the high voltage meter.
- 2. Press numeric key **0** . ~ **9** to input the reading of high voltage meter.
- 3. Press **ENTER** to confirm the input.
- 4. Press **STOP** to stop high voltage output.
- 5. Press ▼ to go to ACV 5kV 50Hz OFFSET (0.1kV) calibration.

ACV 5kV 50Hz OFFSET(0.1kV) Calibration Screen:

CALIBRATION		
ACV 5kV 50Hz	OFFSET (0.1kV)	NEXT CH
CHANNEL: 1		PREV CH
OUTPUT 0.100kV	READING 0.100kV	
STANDARD 0.101kV		
0.101KV		
DEF=0.1kV	REMOTE LOCK	CORR ERROR

- 1. Press **START** to output voltage and read the data from the high voltage meter.
- 2. Press numeric key $\mathbf{0}$ $\mathbf{0}$ $\mathbf{0}$ $\mathbf{0}$ to input the reading of high voltage meter.
- 3. Press **ENTER** to confirm the input.
- 4. Press **STOP** to stop high voltage output.
- 5. Press ▼ to go to ACV 5kV 50Hz FULL (4kV) calibration.

ACV 5kV 50Hz FULL (4kV) Calibration Screen:

CALIBRATION		
ACV 5kV 50Hz FU	LL (4kV)	NEXT CH
CHANNEL: 1		PREV CH
CHANNEL: I		
OUTPUT	READING -	
4.000kV	3.990kV	
STANDARD	-	
3.985kV	-	
DEF=4 kV	REMOTE LOCK C	ORR
DEF-4KV	KENOIE LOCK C	

- 1. Press **START** to output voltage and read the data from the high voltage meter.
- 2. Press numeric key $\mathbf{0}$ $\mathbf{0}$ $\mathbf{0}$ $\mathbf{0}$ $\mathbf{0}$ to input the reading of high voltage meter.
- 3. Press **ENTER** to confirm the input.
- 4. Press **STOP** to stop high voltage output.
- 5. Press ▼ to go to ACV 5kV 60Hz OFFSET (0.1kV) calibration.

ACV 5kV 60Hz OFFSET(0.1kV) Calibration Screen:

CALIBRATION					
ACV 5kV 60Hz	OFFSET	(0.1kV)		NEXT	Г СН
CHANNEL: 1				PREV	/ CH
OUTPUT	READ	ING			
0.100kV	0.10	3kV			
STANDARD					
0.104kV					
DEF=0.1kV		REMOTE	LOCK	CORR	ERROR

- 1. Press **START** to output voltage and read the data from the high voltage meter.
- 2. Press numeric key $\mathbf{0}$ $\mathbf{0}$ $\mathbf{0}$ $\mathbf{0}$ $\mathbf{0}$ to input the reading of high voltage meter.
- 3. Press **ENTER** to confirm the input.
- 4. Press **STOP** to stop high voltage output.
- 5. Press ▼ to go to ACV 5kV 60Hz FULL (4kV) calibration.

ACV 5kV 60Hz FULL (4kV) Calibration Screen:

CALIBRATION		
ACV 5kV 60Hz FULL (4kV)	NEXT CH
CHANNEL: 1		PREV CH
CHANNEL: I		
OUTPUT READ 4.000kV 4.01		
STANDARD 3.998kV	-	
5.99080		
DEF=4kV	REMOTE LOCK C	ORR ERROR

- 1. Press **START** to output voltage and read the data from the high voltage meter.
- 2. Press numeric key **0** . ~ **9** to input the reading of high voltage meter.
- 3. Press **ENTER** to confirm the input.
- 4. Press **STOP** to stop high voltage output.
- 5. Press ▼ to go to DCV 6kV AGC OFFSET (0.1kV) calibration.

7.4.2 DCV Calibration

Connect a DCV high voltage meter to the Tester with high voltage terminal connected to HV OUTPUT and low voltage terminal connected to RTN/LOW of the channel to be calibrated.

DCV 6kV AGC OFFSET(0.1kV) Calibration Screen:

CALIBRATION		
DCV 6kV AGC OFF	'SET (0.1kV)	NEXT CH
CHANNEL: 1		PREV CH
CHANNEL, I		
OUTPUT	READING	
0.100kV	0.102kV	
STANDARD		
0.101kV		
DEF=0.1kV	REMOTE LOCK	CORR ERROR

- 1. Press **START** to output voltage and read the data from the high voltage meter.
- 2. Press numeric key **O** \sim **9** to input the reading of high voltage meter.
- 3. Press **ENTER** to confirm the input.
- 4. Press **STOP** to stop high voltage output.
- 5. Press T to go to DCV 6kV AGC FULL (4kV) calibration.

DCV 6kV AGC FULL (4kV) Calibration Screen:

CALIBRATION		
DCV 6kV AGC FULL	(4kV)	NEXT CH
CHANNEL: 1		PREV CH
CHANNEL: I		
••	ADING -	
4.000kV 3.1	991kV	
STANDARD		
3.991kV	-	
DEF=4kV	REMOTE LOCK C	ORR ERROR

- 1. Press **START** to output voltage and read the data from the high voltage meter.
- 2. Press numeric key $\mathbf{0}$ $\mathbf{0}$ $\mathbf{0}$ $\mathbf{0}$ to input the reading of high voltage meter.
- 3. Press **ENTER** to confirm the input.
- 4. Press **STOP** to stop high voltage output.
- 5. Press to go to DCV 6kV OFFSET (0.1kV) calibration.

DCV 6kV OFFSET(0.1kV) Calibration Screen:

CALIBRATION		
DCV 6kV OFFSET	(0.1kV)	NEXT CH
CHANNEL: 1		PREV CH
OUTPUT 0.100kV	READING 0.095kV	
STANDARD 0.093kV		
0.050120		
DEF=0.1kV	REMOTE LOCK (CORR ERROR

- 1. Press **START** to output voltage and read the data from the high voltage meter.
- 2. Press numeric key **0** . ~ **9** to input the reading of high voltage meter.
- 3. Press **ENTER** to confirm the input.
- 4. Press **STOP** to stop high voltage output.
- 5. Press T to go to DCV 6kV FULL (4kV) calibration.

DCV 6kV FULL (4kV) Calibration Screen:

CALIBRATION		
DCV 6kV FULL	(4kV)	NEXT CH
CHANNEL: 1		PREV CH
CHANNEL: I		
OUTPUT	READING	
4.000kV	3.982kV	
STANDARD		
3.991kV		
DEF=4kV	REMOTE LOCK C	CORR ERROR

- 1. Press **START** to output voltage and read the data from the high voltage meter.
- 2. Press numeric key **0 .** ~ **9** to input the reading of high voltage meter.
- 3. Press **ENTER** to confirm the input.
- 4. Press **STOP** to stop high voltage output.
- 5. Press T to go to OSC 100V OFFSET (50V) calibration.

7.4.3 OSCV Calibration

OSC 100V OFFSET(50V) Calibration Screen:

CALIBRATION		
OSC 100V OFFSET	: (50V)	NEXT CH
CHANNEL: 1		PREV CH
OUTPUT 50V	READING 55V	
STANDARD 62V		
DEF=50V	REMOTE LOCK	CORR ERROR

- 1. Press **START** to output voltage and read the data from the high voltage meter.
- 2. Press numeric key $\mathbf{0}$ $\mathbf{0}$ $\mathbf{0}$ $\mathbf{0}$ $\mathbf{0}$ to input the reading of high voltage meter.
- 3. Press **ENTER** to confirm the input.
- 4. Press **STOP** to stop high voltage output.
- 5. Press **v** to go to OSC 100V FULL (100V) calibration.

OSC 100V FULL (100V) Calibration Screen:

CALIBRATION		
OSC 100V FULL	(100V)	NEXT CH
CULANNEL - 1		PREV CH
CHANNEL: 1		
OUTPUT 100V	READING 104V	
TOOV	1040	
STANDARD 110V		
TTOV		
DEF=100V	REMOTE LOCK	CORR ERROR

- 1. Press **START** to output voltage and read the data from the high voltage meter.
- 2. Press numeric key $\mathbf{0}$ $\mathbf{0}$ $\mathbf{0}$ $\mathbf{0}$ to input the reading of high voltage meter.
- 3. Press **ENTER** to confirm the input.
- 4. Press **STOP** to stop high voltage output.
- 5. Press T to go to ACA 3mA OFFSET (0.12mA) calibration.

7.5 Current Calibration

CAUTION The virtual load has to be in between high potential terminal and ammeter input terminal, or it may cause hazard.

7.5.1 ACA Current Calibration

Connect a 10MΩ 0.5 Watt or high power simulated load resistance in between the high voltage output terminal (HV OUTPUT) of the channel to be calibrated on this Tester and the high potential terminal of AC meter, also connect the low potential terminal (RTN/LOW) of the channel to be calibrated on this Tester to the low potential terminal of AC meter.

ACA 3mA OFFSET(0.12mA) Calibration Screen:

CALIBRATION			
ACA 3mA OFFSET	(0.12mA)	NEXT	СН
CHANNEL: 1	-	PREV	СН
OUTPUT 1.200kV	READING 0.118mA		
STANDARD 0.119mA	-		
0.119/01			
LOAD=10MQ	REMOTE LOCK C	CORR	ERROR

- 1. Press **START** to output voltage and read the data from the AC meter.
- 2. Press numeric key **0** . ~ **9** to input the reading of AC meter.
- 3. Press **ENTER** to confirm the input.
- 4. Press **STOP** to stop high voltage output.
- 5. Press T to go to ACA 3mA FULL (2.4mA) calibration.

Change the simulated load resistance to 500kΩ **10watt or higher power.**

ACA 3mA FULL(2.4mA) Calibration Screen:

CALIBRATION			
ACA 3mA FULL(2	.4mA)	NEXT	СН
CHANNEL: 1		PREV	СН
OUTPUT	READING		
1.200kV	2.376mA		
STANDARD 2.402mA			
LOAD=500kΩ	REMOTE LOCK	CORR	ERROR

- 1. Press **START** to output voltage and read the data from the AC meter.
- 2. Press numeric key **0** . ~ **9** to input the reading of AC meter.
- 3. Press **ENTER** to confirm the input.
- 4. Press **STOP** to stop high voltage output.
- 5. Press ▼ to go to ACA 10mA OFFSET (2.4mA) calibration.

ACA 10mA OFFSET(2.4mA) Calibration Screen:

CALIBRATION		
ACA 10mA OFFSE	T(2.4mA)	NEXT CH
CHANNEL: 1		PREV CH
CHANNEL: I		
OUTPUT 1.200kV	READING 2.36mA	
1.200KV	2.30IIIA	
STANDARD 2.40mA		
2.401114		
LOAD=500kΩ	REMOTE LOCK (CORR ERROR

- 1. Press **START** to output voltage and read the data from the AC meter.
- 2. Press numeric key $\mathbf{0}$ $\mathbf{0}$ $\mathbf{0}$ $\mathbf{0}$ to input the reading of AC meter.
- 3. Press **ENTER** to confirm the input.
- 4. Press **STOP** to stop high voltage output.
- 5. Press T to go to ACA 10mA FULL (4.8mA) calibration.

Change the simulated load resistance to 250kΩ 20 Watts or higher power.

ACA 10mA FULL(4.8mA) Calibration Screen:

CALIBRATION		
ACA 10mA FULL (4	4.8mA)	NEXT CH
CHANNEL: 1		PREV CH
OUTPUT 1.200kV	READING 4.83mA	
STANDARD 4.92mA		
1. 221111		
LOAD=250kΩ	REMOTE LOCK	CORR ERROR

- 1. Press **START** to output voltage and read the data from the AC meter.
- 2. Press numeric key **0** \cdot ~ **9** to input the reading of AC meter.
- 3. Press **ENTER** to confirm the input.
- 4. Press **STOP** to stop high voltage output.
- 5. Press ▼ to go to DCA 3mA OFFSET (0.12mA) calibration.

7.5.2 DCA Current Calibration

Connect a 10MΩ 0.5 Watt or high power simulated load resistance in between the high voltage output terminal (HV OUTPUT) of the channel to be calibrated on this Tester and the high potential terminal of AC meter, also connect the low potential terminal (RTN/LOW) of the channel to be calibrated on this Tester to the low potential terminal of AC meter.

DCA 3mA OFFSET(0.12mA) Calibration Screen:

CALIBRATION			
DCA 3mA OFFSET	(0.12mA)	NEXT CH	
CHANNEL: 1		PREV CH	
OUTPUT 1.200kV	READING 0.118mA		
STANDARD 0.120mA			
LOAD=10MQ	REMOTE LOCK	CORR ERF	ROR

- 1. Press **START** to output voltage and read the data from the DC meter.
- 2. Press numeric key $\mathbf{0}$ $\mathbf{0}$ $\mathbf{0}$ $\mathbf{0}$ to input the reading of DC meter.
- 3. Press **ENTER** to confirm the input.
- 4. Press **STOP** to stop high voltage output.
- 5. Press **v** to go to DCA 3mA FULL (2.4mA) calibration.
- **Change the simulated load resistance to 500k**Ω **10watt or higher power.**

DCA 3mA FULL(2.4mA) Calibration Screen:

CALIBRATION		
DCA 3mA FULL(2	.4mA)	NEXT CH
CHANNEL: 1		PREV CH
OUTPUT	READING	
1.200kV	2.378mA	
STANDARD 2.401mA		
2.401111A		
LOAD=500kΩ	REMOTE LOCK (CORR ERROR

- 1. Press **START** to output voltage and read the data from the DC meter.
- 2. Press numeric key $\mathbf{0}$ $\mathbf{0}$ $\mathbf{0}$ $\mathbf{0}$ and $\mathbf{0}$ to input the reading of DC meter.
- 3. Press **ENTER** to confirm the input.
- 4. Press **STOP** to stop high voltage output.
- 5. Press T to go to DCA 5mA OFFSET (2.4mA) calibration.

DCA 5mA OFFSET(2.4mA) Calibration Screen:

CALIBRATION		
DCA 5mA OFFSET	(2.4mA)	NEXT CH
CHANNEL: 1		PREV CH
OUTPUT	READING	
1.200kV	2.35mA	
STANDARD 2.40mA		
LOAD=500kΩ	REMOTE LOCK (CORR ERROR

- 1. Press **START** to output voltage and read the data from the DC meter.
- 2. Press numeric key $\mathbf{0}$ $\mathbf{0}$ $\mathbf{0}$ $\mathbf{0}$ $\mathbf{0}$ to input the reading of DC meter.
- 3. Press **ENTER** to confirm the input.
- 4. Press **STOP** to stop high voltage output.
- 5. Press **v** to go to DCA 5mA FULL (4.8mA) calibration.

Change the simulated load resistance to 250kΩ 20 Watts or higher power.

DCA 5mA FULL(4.8mA) Calibration Screen:

CALIBRATION			
DCA 10mA FULL(4.8mA)	NEXT	СН
CHANNEL: 1		PREV	СН
OUTPUT READ	DING		
1.200kV 4.82	2mA		
STANDARD 4.91mA			
	·		
LOAD=250kΩ	REMOTE LOCK (CORR	ERROR

- 1. Press **START** to output voltage and read the data from the DC meter.
- 2. Press numeric key $\mathbf{0}$ $\mathbf{0}$ $\mathbf{0}$ $\mathbf{0}$ $\mathbf{0}$ to input the reading of DC meter.
- 3. Press **ENTER** to confirm the input.
- 4. Press **STOP** to stop high voltage output.
- 5. Press **T** to go to IRR 200M Ω OFFSET (4M Ω) calibration.

7.6 Insulation Resistance (IR) Calibration

Connect a 4MΩ standard resistance in between the high voltage output terminal (HV OUTPUT) and low potential terminal (RTN/LOW) of the channel to be calibrated on the Tester.

IRR 200MΩ OFFSET (4MΩ) Calibration Screen:

CALIBRATION		
IRR 200MQ OFFS	ΕΤ (4ΜΩ)	NEXT CH
CHANNEL: 1		PREV CH
0		
OUTPUT	READING	
1.000kV	4.1ΜΩ	
STANDARD 4ΜΩ		
11.125		
LOAD=4MQ	REMOTE LOCK	CORR ERROR

- 1. Press **START** to output voltage.
- 2. Press numeric key **0 - 9** to input actual resistance.
- 3. Press **ENTER** to confirm the input.
- 4. Press **STOP** to stop high voltage output.
- 5. Press $\overline{\mathbf{V}}$ to go to IRR 200M Ω FULL(20M Ω) calibration.
- Connect a 20MΩ standard resistance in between the high voltage output terminal (HV OUTPUT) and low potential terminal (RTN/LOW) of the channel to be calibrated on the Tester.

IRR 200MΩ FULL (20MΩ) Calibration Screen:

CALIBRATION		
IRR 200MΩ FULL(2	20MQ)	NEXT CH
CHANNEL: 1		PREV CH
	READING 20.4MΩ	
STANDARD 20MΩ	-	
LOAD=20MΩ	REMOTE LOCK C	ORR ERROR

- 1. Press **START** to output voltage.
- 2. Press numeric key **0 .** ~ **9** to input actual resistance.
- 3. Press **ENTER** to confirm the input.
- 4. Press **STOP** to stop high voltage output.
- 5. Press \blacksquare to go to IRR 2G Ω OFFSET (40M Ω) calibration.

Connect a 40MΩ standard resistance in between the high voltage output terminal (HV OUTPUT) and low potential terminal (RTN/LOW) of the channel to be calibrated on the Tester.

IRR 2GΩ OFFSET (40MΩ) Calibration Screen:

CALIBRATION		
IRR $2G\Omega$ OFFSET	(40MΩ)	NEXT CH
CHANNEL: 1		PREV CH
CHANNEL, I		
OUTPUT	READING	-
1.000kV	40.7ΜΩ	
STANDARD 40MΩ		
4 0 MS2		
LOAD=40MQ	REMOTE LOCK	CORR ERROR

- 1. Press **START** to output voltage.
- 2. Press numeric key **0 .** ~ **9** to input actual resistance.
- 3. Press **ENTER** to confirm the input.
- 4. Press **STOP** to stop high voltage output.
- 5. Press $\overline{\mathbf{V}}$ to go to IRR $2G\Omega$ FULL (200M Ω) calibration.
- Connect a 200MΩ standard resistance in between the high voltage output terminal (HV OUTPUT) and low potential terminal (RTN/LOW) of the channel to be calibrated on the Tester.

IRR 2GΩ FULL (200MΩ) Calibration Screen:

CALIBRATION		
IRR $2G\Omega$ FULL(2	00MQ)	NEXT CH
CHANNEL: 1		PREV CH
OUTPUT 1.000kV	READING 204MΩ	
STANDARD 200ΜΩ		
LOAD=200MQ	REMOTE LOCK C	CORR ERROR

- 1. Press **START** to output voltage.
- 2. Press numeric key **0 .** ~ **9** to input actual resistance.
- 3. Press **ENTER** to confirm the input.
- 4. Press **STOP** to stop high voltage output.
- 5. Press $\overline{\mathbf{V}}$ to go to IRR 20G Ω OFFSET (400M Ω) calibration.

Connect a 400MΩ standard resistance in between the high voltage output terminal (HV OUTPUT) and low potential terminal (RTN/LOW) of the channel to be calibrated on the Tester.

IRR 20GΩ OFFSET (400MΩ) Calibration Screen:

CALIBRATION		
IRR 20GQ OFFSET(400	MΩ)	NEXT CH
CHANNEL: 1		PREV CH
OUTPUTREAD1.000kV408M		
STANDARD 400MQ		
LOAD=400MQ	REMOTE LOCK C	ORR ERROR

- 1. Press **START** to output voltage.
- 2. Press numeric key **0 .** ~ **9** to input actual resistance.
- 3. Press **ENTER** to confirm the input.
- 4. Press **STOP** to stop high voltage output.
- 5. Press \blacksquare to go to IRR 20G Ω FULL (2G Ω) calibration.
- Connect a 2GΩ standard resistance in between the high voltage output terminal (HV OUTPUT) and low potential terminal (RTN/LOW) of the channel to be calibrated on the Tester.

IRR 20GΩ FULL (2GΩ) Calibration Screen:

CALIBRATION		
IRR 20G Ω FULL(2G Ω)	NEXT	СН
CHANNEL: 1	PREV	СН
OUTPUT READING 1.000kV 2.04MΩ		
STANDARD 2.00GΩ		
LOAD=2GQ REMOTE LOCK	CORR	ERROR

- 1. Press **START** to output voltage.
- 2. Press numeric key **0 .** ~ **9** to input actual resistance.
- 3. Press **ENTER** to confirm the input.
- 4. Press **STOP** to stop high voltage output.
- 5. Press \blacksquare to go to IRR 200G Ω OFFSET (4G Ω) calibration.

Connect a 4GΩ standard resistance in between the high voltage output terminal (HV OUTPUT) and low potential terminal (RTN/LOW) of the channel to be calibrated on the Tester.

IRR 200GΩ OFFSET (4GΩ) Calibration Screen:

CALIBRATION			
IRR 200GQ OFFS	ET (4GΩ)	NEXT	СН
CHANNEL: 1		PREV	СН
OUTPUT 1.000kV	READING 4.12GΩ		
STANDARD 4.0GΩ			
LOAD=4GQ	REMOTE LOCK C	CORR	ERROR

- 1. Press **START** to output voltage.
- 2. Press numeric key **0 .** ~ **9** to input actual resistance.
- 3. Press **ENTER** to confirm the input.
- 4. Press **STOP** to stop high voltage output.
- 5. Press \blacksquare to go to IRR 200G Ω FULL (20G Ω) calibration.
- Connect a 20GΩ standard resistance in between the high voltage output terminal (HV OUTPUT) and low potential terminal (RTN/LOW) of the channel to be calibrated on the Tester.

IRR 200GΩ FULL (20GΩ) Calibration Screen:

CALIBRATION								
IRR 200G Ω FULL	(20GΩ))					NEXT	СН
CHANNEL: 1							PREV	СН
CHANNEL. I								
OUTPUT	READ	Ι	NG					
1.000kV	20.5	G	GΩ					
STANDARD								
20.0GΩ								
LOAD=20GQ			REMOTE	LC	CK	(CORR	ERROR

- 1. Press **START** to output voltage.
- 2. Press numeric key **0 .** ~ **9** to input actual resistance.
- 3. Press **ENTER** to confirm the input.
- 4. Press **STOP** to stop high voltage output.
- 5. Press $\overline{\mathbf{V}}$ to go to IRR 550G Ω OFFSET (40G Ω) calibration.

Connect a 40GΩ standard resistance in between the high voltage output terminal (HV OUTPUT) and low potential terminal (RTN/LOW) of the channel to be calibrated on the Tester.

IRR 550GΩ OFFSET (40GΩ) Calibration Screen:

CALIBRATION		
IRR 550GΩ OFFS	ET (40GΩ)	NEXT CH
CHANNEL: 1		PREV CH
OUTPUT 1.000kV	READING 40.5GΩ	
STANDARD 40GΩ		
LOAD=40GQ	REMOTE LOCK	CORR ERROR

- 1. Press **START** to output voltage.
- 2. Press numeric key **0 .** ~ **9** to input actual resistance.
- 3. Press **ENTER** to confirm the input.
- 4. Press **STOP** to stop high voltage output.
- 5. Press \checkmark to go to IRR 550G Ω FULL (200G Ω) calibration.
- Connect a 200GΩ standard resistance in between the high voltage output terminal (HV OUTPUT) and low potential terminal (RTN/LOW) of the channel to be calibrated on the Tester.

IRR 550GΩ FULL (200GΩ) Calibration Screen:

CALIBRATION		
IRR 550G Ω FULL	(200GΩ)	NEXT CH
CHANNEL: 1		PREV CH
CHANNEL. I		
OUTPUT 1.000kV	READING 198GΩ	
STANDARD 200gΩ		
LOAD=200GΩ	REMOTE LOCK	CORR ERROR

- 1. Press **START** to output voltage.
- 2. Press numeric key **0 .** ~ **9** to input actual resistance.
- 3. Press **ENTER** to confirm the input.
- 4. Press **STOP** to stop high voltage output.
- 5. Press ▼ to go to AC ARC 15mA (7mA) calibration.

7.7 ARC Calibration

WARNING 1. ARC calibration is special task as the high voltage is exposed

- outside the terminal. Please be careful as it may cause hazard.
- For detail information, please contact Chroma or its local distributors.

7.7.1 AC ARC Calibration

Connect one end of 500kΩ 10Watt or high power simulated load resistance to the high voltage output terminal (HV OUTPUT) of the channel to be calibrated on this Tester, and move the other end close to the low potential terminal (RTN/LOW) of the channel to be calibrated without physical connection in order to create sparks.

AC ARC 15mA (7mA) Calibration Screen:

CALIBRATION					
AC ARC 15mA(7mA	A)			NEXT	Г СН
CHANNEL: 1				PREV	/ CH
OUTPUT 2.500kV	READ 4.1m				
STANDARD 7mA					
,					
LOAD=500kΩ		REMOTE	LOCK	CORR	ERROR

- 1. Press **START** to output voltage.
- 2. When the status indicator shows PASS, it means the device has grabbed the ARC value correctly and stopped the high voltage output.
- 3. Press ▼ to go to DC ARC 5mA (3mA) calibration.

7.7.2 DC ARC Calibration

DC ARC 5mA (3mA) Calibration Screen:

CALIBRATION			
DC ARC 5mA(3mA)	NEXT C	H
CHANNEL: 1		PREV C	H
OUTPUT	READING		
1.500kV	1.9mA		
STANDARD 3.0mA			
J. UIIA			
LOAD=500kΩ	REMOTE LOCK C	CORR E	RROR

- 1. Press **START** to output voltage.
- 2. When the status indicator shows PASS, it means the device has grabbed the ARC value correctly and stopped the high voltage output.

7.8 When Calibration is Done

- 1. Press **SYSTEM** to exit calibration mode or press▼ to return to A/D REFERENCE calibration screen.
- 2. To calibrate other channels, press Function Key [NEXT CH][PREV CH] to select another channel for calibration.

CHROMA ATE INC. 致茂電子股份有限公司 66 Hwaya 1st Rd. Kuei-shan Hwaya Technology Park Taoyuan County 33383, Taiwan 33383 台灣桃園縣龜山鄉 華亞科技園區華亞一路 66 號 T +886-3-327-9999 F +886-3-327-8898 Mail: info@chromaate.com http://www.chromaate.com

Copyright by CHROMA ATE INC. All Rights Reserved. All other trade names referenced are the properties of their respective companies.